Machine Learning-based Fingerprinting Localization in 5G Cellular Networks
but.event.date | 23.04.2024 | cs |
but.event.title | STUDENT EEICT 2024 | cs |
dc.contributor.author | Dinh Le, Thao | |
dc.contributor.author | Mašek, Pavel | |
dc.date.accessioned | 2024-07-09T07:47:51Z | |
dc.date.available | 2024-07-09T07:47:51Z | |
dc.date.issued | 2024 | cs |
dc.description.abstract | This study explores the viability of employing machine learning (ML)-based fingerprinting localization in 5G heterogeneous cellular networks. We conducted an extensive measurement campaign to collect data and utilized them to train three ML models: Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM). The findings reveal that RF delivers the highest accuracy among the three ML algorithms. Furthermore, the results indicate that 5G New Radio (NR) can benefit the most from this localization method due to the dense deployment of base stations, achieving median localization errors of 17.5 m and 106 m during the validation and testing phases, respectively. | en |
dc.format | text | cs |
dc.format.extent | 222-226 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings II of the 30st Conference STUDENT EEICT 2024: Selected papers. s. 222-226. ISBN 978-80-214-6230-4 | cs |
dc.identifier.doi | 10.13164/eeict.2024.222 | |
dc.identifier.isbn | 978-80-214-6230-4 | |
dc.identifier.issn | 2788-1334 | |
dc.identifier.uri | https://hdl.handle.net/11012/249320 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings II of the 30st Conference STUDENT EEICT 2024: Selected papers | en |
dc.relation.uri | https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Fingerprinting Localization | en |
dc.subject | Machine Learning | en |
dc.subject | 5G New Radio | en |
dc.subject | NB-IoT | en |
dc.subject | LTE-M | en |
dc.subject | Random Forest | en |
dc.subject | XGBoost | en |
dc.subject | Support Vector Machine | en |
dc.title | Machine Learning-based Fingerprinting Localization in 5G Cellular Networks | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 222-eeict-2024-II.pdf
- Size:
- 21.91 MB
- Format:
- Adobe Portable Document Format
- Description: