Machine Learning-based Fingerprinting Localization in 5G Cellular Networks

Loading...
Thumbnail Image
Date
2024
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
This study explores the viability of employing machine learning (ML)-based fingerprinting localization in 5G heterogeneous cellular networks. We conducted an extensive measurement campaign to collect data and utilized them to train three ML models: Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM). The findings reveal that RF delivers the highest accuracy among the three ML algorithms. Furthermore, the results indicate that 5G New Radio (NR) can benefit the most from this localization method due to the dense deployment of base stations, achieving median localization errors of 17.5 m and 106 m during the validation and testing phases, respectively.
Description
Citation
Proceedings II of the 30st Conference STUDENT EEICT 2024: Selected papers. s. 222-226. ISBN 978-80-214-6230-4
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Citace PRO