A complex study of photocatalytic oxidation pathways of antibiotics with graphitic carbon nitride-The way towards continuous flow conditions

Loading...
Thumbnail Image

Authors

Schimon, Dominik
Smitková, Karolína
Stavárek, Petr
Jaklová, Natálie
VanLuchene, Anna
Dzik, Petr
Homola, Tomáš
Zažímal, František
Klusoň, Petr

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

The release of pharmaceuticals and their metabolites into the environment poses pollution risks with consequences in fauna and flora that are not yet fully known nor understood. Photocatalysis with graphitic carbon nitride (g-C3N4) using solar light could potentially contribute to reducing these risks. In this work, g-C3N4 in two different forms was investigated for photooxidative degradation of three chosen antibiotics: tetracycline, trimethoprim, and sulfamethoxazole. The emphasis was put on investigation of degradation pathways description, mechanism modeling, and comparison of two photoreactor systems. g-C3N4 in powder form was studied in a batch photoreactor, while g-C3N4 in the form of a photocatalytic film was studied in a photomicroreactor with a slit geometry. It was found that during the photooxidative processes mainly oxidation products of starting material were prevaling in the reaction mixture, while the degradation products of smaller molecular mass were apparently directly mineralized. The comparison of batch and micro protoreactor has shown that the latter was substantially better performing thanks to the more efficient photocatalytic film irradiation and narrow internal space. It was found that the microphotoreactor with a photocatalytic film based on g-C3N4 is a promising concept that provides a high scalability potential and deserves further investigation and development.
The release of pharmaceuticals and their metabolites into the environment poses pollution risks with consequences in fauna and flora that are not yet fully known nor understood. Photocatalysis with graphitic carbon nitride (g-C3N4) using solar light could potentially contribute to reducing these risks. In this work, g-C3N4 in two different forms was investigated for photooxidative degradation of three chosen antibiotics: tetracycline, trimethoprim, and sulfamethoxazole. The emphasis was put on investigation of degradation pathways description, mechanism modeling, and comparison of two photoreactor systems. g-C3N4 in powder form was studied in a batch photoreactor, while g-C3N4 in the form of a photocatalytic film was studied in a photomicroreactor with a slit geometry. It was found that during the photooxidative processes mainly oxidation products of starting material were prevaling in the reaction mixture, while the degradation products of smaller molecular mass were apparently directly mineralized. The comparison of batch and micro protoreactor has shown that the latter was substantially better performing thanks to the more efficient photocatalytic film irradiation and narrow internal space. It was found that the microphotoreactor with a photocatalytic film based on g-C3N4 is a promising concept that provides a high scalability potential and deserves further investigation and development.

Description

Citation

Journal of Environmental Chemical Engineering. 2024, vol. 12, issue 6, p. 1-14.
https://www.sciencedirect.com/science/article/pii/S2213343724029336

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial 4.0 International
Citace PRO