Conformal and Geodesic Mappings onto Some Special Spaces

dc.contributor.authorBerezovski, Vladimircs
dc.contributor.authorCherevko, Yevhencs
dc.contributor.authorVítková, Lenkacs
dc.coverage.issue8cs
dc.coverage.volume7cs
dc.date.issued2019-07-25cs
dc.description.abstractIn this paper, we consider conformal mappings of Riemannian spaces onto Ricci-2-symmetric Riemannian spaces and geodesic mappings of spaces with affine connections onto Ricci-2-symmetric spaces. The main equations for the mappings are obtained as a closed system of Cauchy-type differential equations in covariant derivatives. We find the number of essential parameters which the solution of the system depends on. A similar approach was applied for the case of conformal mappings of Riemannian spaces onto Ricci-m-symmetric Riemannian spaces, as well as geodesic mappings of spaces with affine connections onto Ricci-m-symmetric spaces.en
dc.formattextcs
dc.format.extent1-8cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMathematics. 2019, vol. 7, issue 8, p. 1-8.en
dc.identifier.doi10.3390/math7080664cs
dc.identifier.issn2227-7390cs
dc.identifier.orcid0000-0003-4805-908Xcs
dc.identifier.other163306cs
dc.identifier.researcheridAAD-4510-2019cs
dc.identifier.scopus57197859529cs
dc.identifier.urihttp://hdl.handle.net/11012/188984
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMathematicscs
dc.relation.urihttps://www.mdpi.com/2227-7390/7/8/664cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2227-7390/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectspace with affine connectionen
dc.subjectriemannian spaceen
dc.subjectricci-m-symmetric spaceen
dc.subjectconformal mappingen
dc.subjectgeodesic mappingen
dc.titleConformal and Geodesic Mappings onto Some Special Spacesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-163306en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:44:44en
sync.item.modts2025.01.17 16:44:20en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometriecs
thesis.grantorVysoké učení technické v Brně. . Přírodovědecká fakultacs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics0700664.pdf
Size:
235.43 KB
Format:
Adobe Portable Document Format
Description:
mathematics0700664.pdf