Conformal and Geodesic Mappings onto Some Special Spaces

Loading...
Thumbnail Image

Authors

Berezovski, Vladimir
Cherevko, Yevhen
Vítková, Lenka

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

In this paper, we consider conformal mappings of Riemannian spaces onto Ricci-2-symmetric Riemannian spaces and geodesic mappings of spaces with affine connections onto Ricci-2-symmetric spaces. The main equations for the mappings are obtained as a closed system of Cauchy-type differential equations in covariant derivatives. We find the number of essential parameters which the solution of the system depends on. A similar approach was applied for the case of conformal mappings of Riemannian spaces onto Ricci-m-symmetric Riemannian spaces, as well as geodesic mappings of spaces with affine connections onto Ricci-m-symmetric spaces.
In this paper, we consider conformal mappings of Riemannian spaces onto Ricci-2-symmetric Riemannian spaces and geodesic mappings of spaces with affine connections onto Ricci-2-symmetric spaces. The main equations for the mappings are obtained as a closed system of Cauchy-type differential equations in covariant derivatives. We find the number of essential parameters which the solution of the system depends on. A similar approach was applied for the case of conformal mappings of Riemannian spaces onto Ricci-m-symmetric Riemannian spaces, as well as geodesic mappings of spaces with affine connections onto Ricci-m-symmetric spaces.

Description

Citation

Mathematics. 2019, vol. 7, issue 8, p. 1-8.
https://www.mdpi.com/2227-7390/7/8/664

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO