In vitro evaluation of 3D-printed conductive chitosan–polyaniline scaffolds with exosome release for enhanced angiogenesis and cardiomyocyte protection

dc.contributor.authorHashemi, Amircs
dc.contributor.authorEzati, Masoumehcs
dc.contributor.authorZumberg, Innacs
dc.contributor.authorChmelíková, Larisacs
dc.contributor.authorFohlerová, Zdenkacs
dc.contributor.authorProvazník, Valentýnacs
dc.coverage.issue21cs
dc.coverage.volume15cs
dc.date.issued2025-05-20cs
dc.description.abstractMyocardial infarction (MI) often results in significant damage to heart tissues, leading to cardiac dysfunction, fibrosis, and diminished cell–cell communication. Exosomes (EXOs) from stem cells show great potential in promoting tissue repair and angiogenesis, but their rapid clearance and degradation in vivo limit therapeutic efficacy. Here, we introduce a 3D-printed in vitro scaffold using a conductive biomaterial ink composed of chitosan (CS) and polyaniline (PANI). This scaffold combines the bioactivity of EXOs with the conductive properties of PANI to protect cardiac cells under ischemic stress. Using an in vitro hypoxia/reoxygenation (H/R) model with HL-1 cardiomyocytes, we simulated key aspects of myocardial ischemia-reperfusion injury. The addition of PANI improved the electrical conductivity of the scaffold, which was essential for enhancing cardiomyocyte viability and intercellular connectivity under hypoxic conditions. EXOs significantly promoted angiogenic activity in vitro, as evidenced by enhanced human umbilical vein endothelial cell (HUVEC) migration and robust tube formation, highlighting their role in stimulating new blood vessel growth. Molecular analyses revealed that EXOs positively influence processes such as angiogenesis and inflammation regulation in HL-1 cells. Additionally, EXOs improved HUVEC migration, emphasizing their pro-angiogenic role. These findings indicate that combining PANI and EXOs in a 3D-printed scaffold yields synergistic benefits, improving cardiomyocyte function and promoting endothelial angiogenesis in vitro, thereby providing insights for future cardiac repair strategies.en
dc.description.abstractMyocardial infarction (MI) often results in significant damage to heart tissues, leading to cardiac dysfunction, fibrosis, and diminished cell–cell communication. Exosomes (EXOs) from stem cells show great potential in promoting tissue repair and angiogenesis, but their rapid clearance and degradation in vivo limit therapeutic efficacy. Here, we introduce a 3D-printed in vitro scaffold using a conductive biomaterial ink composed of chitosan (CS) and polyaniline (PANI). This scaffold combines the bioactivity of EXOs with the conductive properties of PANI to protect cardiac cells under ischemic stress. Using an in vitro hypoxia/reoxygenation (H/R) model with HL-1 cardiomyocytes, we simulated key aspects of myocardial ischemia-reperfusion injury. The addition of PANI improved the electrical conductivity of the scaffold, which was essential for enhancing cardiomyocyte viability and intercellular connectivity under hypoxic conditions. EXOs significantly promoted angiogenic activity in vitro, as evidenced by enhanced human umbilical vein endothelial cell (HUVEC) migration and robust tube formation, highlighting their role in stimulating new blood vessel growth. Molecular analyses revealed that EXOs positively influence processes such as angiogenesis and inflammation regulation in HL-1 cells. Additionally, EXOs improved HUVEC migration, emphasizing their pro-angiogenic role. These findings indicate that combining PANI and EXOs in a 3D-printed scaffold yields synergistic benefits, improving cardiomyocyte function and promoting endothelial angiogenesis in vitro, thereby providing insights for future cardiac repair strategies.en
dc.formattextcs
dc.format.extent16826-16844cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationRSC Advances. 2025, vol. 15, issue 21, p. 16826-16844.en
dc.identifier.doi10.1039/D5RA02940Fcs
dc.identifier.issn2046-2069cs
dc.identifier.orcid0000-0002-9919-3812cs
dc.identifier.orcid0009-0004-0687-0944cs
dc.identifier.orcid0000-0001-7250-1945cs
dc.identifier.orcid0000-0002-3178-4202cs
dc.identifier.orcid0000-0002-1232-2301cs
dc.identifier.orcid0000-0002-3422-7938cs
dc.identifier.other197944cs
dc.identifier.researcheridAAQ-4108-2021cs
dc.identifier.researcheridD-3886-2018cs
dc.identifier.researcheridA-6893-2013cs
dc.identifier.researcheridF-4121-2012cs
dc.identifier.scopus57209822630cs
dc.identifier.scopus57188881119cs
dc.identifier.scopus6701729526cs
dc.identifier.urihttp://hdl.handle.net/11012/251330
dc.language.isoencs
dc.publisherRoyal Society of Chemistrycs
dc.relation.ispartofRSC Advancescs
dc.relation.urihttps://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02940fcs
dc.rightsCreative Commons Attribution 3.0 Unportedcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2046-2069/cs
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/cs
dc.subjectElectroconductive biomaterial inken
dc.subject3D bioprinted scaffoldsen
dc.subjectchitosanen
dc.subjectpolyanilineen
dc.subjectexosomesen
dc.subjectHL-1 cardiomyocytesen
dc.subjecthypoxia/reoxygenation modelen
dc.subjectmyocardial infarctionen
dc.subjectcardiac tissue regeneration.en
dc.subjectElectroconductive biomaterial ink
dc.subject3D bioprinted scaffolds
dc.subjectchitosan
dc.subjectpolyaniline
dc.subjectexosomes
dc.subjectHL-1 cardiomyocytes
dc.subjecthypoxia/reoxygenation model
dc.subjectmyocardial infarction
dc.subjectcardiac tissue regeneration.
dc.titleIn vitro evaluation of 3D-printed conductive chitosan–polyaniline scaffolds with exosome release for enhanced angiogenesis and cardiomyocyte protectionen
dc.title.alternativeIn vitro evaluation of 3D-printed conductive chitosan–polyaniline scaffolds with exosome release for enhanced angiogenesis and cardiomyocyte protectionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197944en
sync.item.dbtypeVAVen
sync.item.insts2025.11.20 22:54:45en
sync.item.modts2025.11.20 22:33:55en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav mikroelektronikycs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
d5ra02940f.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format
Description:
file d5ra02940f.pdf