Strojové učení z dat systémů pro detekci síťového průniku

Loading...
Thumbnail Image
Date
Authors
Dostál, Michal
ORCID
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Aktuální stav nástrojů pro detekci síťového průniku je nedostačující, protože tyto nástroje často fungují na základě statických pravidel a nevyužívají potenciál umělé inteligence. Cílem této práce je rozšířit open-source nástroj Snort o schopnost detekovat škodlivý síťový provoz pomocí strojového učení. Pro dosažení kvalitního klasifikátoru byly zvoleny užitečné příznaky síťového toku, které byly získány z výstupních dat aplikace Snort. Následně byly tyto toky obohaceny a označeny odpovídajícími událostmi. Experimenty vykazují velmi dobré výsledky nejenom při klasifikaci na testovacích datech, ale také v rychlosti zpracování. Z~navrženého přístupu a samotných experimentů vyplývá, že tento nový přístup by mohl vykazovat dobrou úspěšnost i při práci s reálnými daty.
The current state of intrusion detection tools is insufficient because they often operate based on static rules and fail to leverage the potential of artificial intelligence. The aim of this work is to enhance the open-source tool Snort with the capability to detect malicious network traffic using machine learning. To achieve a robust classifier, useful features of network traffic were choosed, extracted from the output data of the Snort application. Subsequently, these traffic features were enriched and labeled with corresponding events. Experiments demonstrate excellent results not only in classification accuracy on test data but also in processing speed. The proposed approach and the conducted experiments indicate that this new method could exhibit promising performance even when dealing with real-world data.
Description
Citation
DOSTÁL, M. Strojové učení z dat systémů pro detekci síťového průniku [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2023.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Počítačové sítě
Comittee
prof. Ing. Tomáš Hruška, CSc. (předseda) doc. Ing. Petr Matoušek, Ph.D., M.A. (člen) Mgr. Kamil Malinka, Ph.D. (člen) Ing. Vojtěch Havlena, Ph.D. (člen) doc. RNDr. Jitka Kreslíková, CSc. (člen) Ing. Šárka Květoňová, Ph.D. (člen)
Date of acceptance
2023-08-24
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO