Asymptotic integration of fractional differential equations with integrodifferential right-hand side

Loading...
Thumbnail Image

Authors

Medveď, Milan
Pospíšil, Michal

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vilnius Gediminas Technical University

ORCID

Altmetrics

Abstract

In this paper we deal with the problem of asymptotic integration of a class of fractional differential equations of the Caputo type. The left-hand side of such type of equation is the Caputo derivative of the fractional order r is an element of (n - 1, n) of the solution, and the right-hand side depends not only on ordinary derivatives up to order n - 1 but also on the Caputo derivatives of fractional orders 0 < r(1) < . . . < r(m) < r, and the Riemann-Liouville fractional integrals of positive orders. We give some conditions under which for any global solution x(t) of the equation, there is a constant c is an element of R such that x(t) = ct(R) + o(t(R)) as t --> infinity where R = max{n - 1, r(m)}.
In this paper we deal with the problem of asymptotic integration of a class of fractional differential equations of the Caputo type. The left-hand side of such type of equation is the Caputo derivative of the fractional order r is an element of (n - 1, n) of the solution, and the right-hand side depends not only on ordinary derivatives up to order n - 1 but also on the Caputo derivatives of fractional orders 0 < r(1) < . . . < r(m) < r, and the Riemann-Liouville fractional integrals of positive orders. We give some conditions under which for any global solution x(t) of the equation, there is a constant c is an element of R such that x(t) = ct(R) + o(t(R)) as t --> infinity where R = max{n - 1, r(m)}.

Description

Citation

Mathematical Modelling and Analysis. 2015, vol. 20, issue 4, p. 471-489.
https://journals.vgtu.lt/index.php/MMA/article/view/1014

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO