Modeling and Experimental Verification of Plasma Jet Electromagnetic Signals

Loading...
Thumbnail Image

Authors

Drexler, Petr
Szabó, Zoltán
Pernica, Roman
Zukal, Jiří
Kadlec, Radim
Klíma, Miloš
Fiala, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Herein, we discuss the modeling and verification of RF sensed signals in a simple plasma channel (plasma jet) at the generator frequency of f = 13.56 MHz, assuming plasma discharge at atmospheric pressure. The actual experiment was preceded by a basic numerical analysis and evaluation of several variants of the geometric/numerical model of a simple plasma channel formed in a glass capillary chamber; this step was performed with different electrode configurations. The analyses also included the impact of the location of the sensing element (i.e., the antenna) on the resulting evaluated electromagnetic signal. Furthermore, a numerical model with concentrated parameters facilitated a comparative analysis centered on the impact of plasma concentration and composition in the monitored electromagnetic RF spectrum of the channel. The theoretical outputs were verified via experiments and compared. This methodology finds use in the radio-frequency evaluation of plasma parameters in both simple capillary nozzles and more complex, slit-designed plasma chambers.
Herein, we discuss the modeling and verification of RF sensed signals in a simple plasma channel (plasma jet) at the generator frequency of f = 13.56 MHz, assuming plasma discharge at atmospheric pressure. The actual experiment was preceded by a basic numerical analysis and evaluation of several variants of the geometric/numerical model of a simple plasma channel formed in a glass capillary chamber; this step was performed with different electrode configurations. The analyses also included the impact of the location of the sensing element (i.e., the antenna) on the resulting evaluated electromagnetic signal. Furthermore, a numerical model with concentrated parameters facilitated a comparative analysis centered on the impact of plasma concentration and composition in the monitored electromagnetic RF spectrum of the channel. The theoretical outputs were verified via experiments and compared. This methodology finds use in the radio-frequency evaluation of plasma parameters in both simple capillary nozzles and more complex, slit-designed plasma chambers.

Description

Citation

Modelling. 2022, vol. 3, issue 1, p. 70-91.
https://www.mdpi.com/2673-3951/3/1/5

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO