Lightweight Spectrum Prediction Based on Knowledge Distillation

dc.contributor.authorCheng, R.
dc.contributor.authorZhang, J.
dc.contributor.authorDeng, J.
dc.contributor.authorZhu, Y.
dc.coverage.issue4cs
dc.coverage.volume32cs
dc.date.accessioned2024-01-09T14:20:49Z
dc.date.available2024-01-09T14:20:49Z
dc.date.issued2023-12cs
dc.description.abstractTo address the challenges of increasing complexity and larger number of training samples required for high-accuracy spectrum prediction, we propose a novel lightweight model, leveraging a temporal convolutional network (TCN) and knowledge distillation. First, the prediction accuracy of TCN is enhanced via a self-transfer method. Then, we design a two-branch network which can extract the spectrum features efficiently. By employing knowledge distillation, we transfer the knowledge from TCN to the two-branch network, resulting in improved accuracy for spectrum prediction of the lightweight network. Experimental results show that the proposed model can improve accuracy by 19.5% compared to the widely-used LSTM model with sufficient historical data and reduces 71.1% parameters to be trained. Furthermore, the prediction accuracy is improved by 17.9% compared to Gated Recurrent Units (GRU) in the scenarios with scarce historical data.en
dc.formattextcs
dc.format.extent469-478cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2023 vol. 32, č. 4, s. 469-478. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2023.0469en
dc.identifier.issn1210-2512
dc.identifier.urihttps://hdl.handle.net/11012/244200
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2023/23_04_0469_0478.pdfcs
dc.rightsCreative Commons Attribution 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectSpectrum predictionen
dc.subjectknowledge distillationen
dc.subjecttemporal convolutional networken
dc.subjectlightweight networksen
dc.subjectfew-shot learningen
dc.titleLightweight Spectrum Prediction Based on Knowledge Distillationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
23_04_0469_0478.pdf
Size:
873.5 KB
Format:
Adobe Portable Document Format
Description:
Collections