Hluboké učení pro lokalizaci epileptického ložiska

but.defenceStudentka Tereza Přidalová prezentovala svou diplomovou práci a zodpověděla dotazy v průběhu diskuze. Studentka svou práci úspěšně obhájila.cs
but.jazykangličtina (English)
but.programBioengineeringcs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorMehnen, Larsen
dc.contributor.authorPřidalová, Terezaen
dc.contributor.refereeCimbálník, Janen
dc.date.created2022cs
dc.description.abstractEpilepsy affects about 50 million people worldwide, with one-third of patients being drugresistant and therefore candidates for an invasive brain resection surgery. Brain resection surgery candidates undergo invasive intracranial encephalography (iEEG) monitoring to determine the seizure onset zone (SOZ). Recorded data can span over weeks and need to be manually reviewed by a physician to assess SOZ. This process can be time-consuming and burdensome due to the vast amount of collected data. This work investigates utilisation of an deep autoencoder for unsupervised data exploration and specifically its ability to discriminate between SOZ and non-SOZ (NSOZ) iEEG channels. The data used in this thesis consists of iEEG collected from 33 patients in two institutes (Mayo Clinic, Rochester, Minnesota, USA and St. Anne´s University Hospital, Brno, Czech Republic - FNUSA) who underwent invasive presurgical monitoring. The autoencoder’s capability to discriminate between SOZ and NSOZ was evaluated using a self-learned embedded feature space representation of the autoencoder network. Autoencoder features were compared to previously established biomarkers for SOZ determination. Discrimination capability was evaluated for both autoencoder features and biomarkers using a Naive Bayes classifier and leave-one-out cross-validation. The achieved area under receiver operating characteristic curve (AUROC) was 0.68 for the FNUSA and 0.56 for the Mayo dataset. Performance in discriminating between SOZ and NSOZ electrodes was not significantly different between the investigated autoencoder features and previously established biomarkers. Selecting the better performing classifier for each patient increased the AUROC to 0.75 and 0.64 for the FNUSA and Mayo dataset, respectively. The results suggest that future approaches combining biomarkers and self-learning methods have a potential to improve the SOZ vs NSOZ discrimination capability of unsupervised iEEG exploration systems, and thus to enhance the surgical management of epilepsy.en
dc.description.abstractEpilepsy affects about 50 million people worldwide, with one-third of patients being drugresistant and therefore candidates for an invasive brain resection surgery. Brain resection surgery candidates undergo invasive intracranial encephalography (iEEG) monitoring to determine the seizure onset zone (SOZ). Recorded data can span over weeks and need to be manually reviewed by a physician to assess SOZ. This process can be time-consuming and burdensome due to the vast amount of collected data. This work investigates utilisation of an deep autoencoder for unsupervised data exploration and specifically its ability to discriminate between SOZ and non-SOZ (NSOZ) iEEG channels. The data used in this thesis consists of iEEG collected from 33 patients in two institutes (Mayo Clinic, Rochester, Minnesota, USA and St. Anne´s University Hospital, Brno, Czech Republic - FNUSA) who underwent invasive presurgical monitoring. The autoencoder’s capability to discriminate between SOZ and NSOZ was evaluated using a self-learned embedded feature space representation of the autoencoder network. Autoencoder features were compared to previously established biomarkers for SOZ determination. Discrimination capability was evaluated for both autoencoder features and biomarkers using a Naive Bayes classifier and leave-one-out cross-validation. The achieved area under receiver operating characteristic curve (AUROC) was 0.68 for the FNUSA and 0.56 for the Mayo dataset. Performance in discriminating between SOZ and NSOZ electrodes was not significantly different between the investigated autoencoder features and previously established biomarkers. Selecting the better performing classifier for each patient increased the AUROC to 0.75 and 0.64 for the FNUSA and Mayo dataset, respectively. The results suggest that future approaches combining biomarkers and self-learning methods have a potential to improve the SOZ vs NSOZ discrimination capability of unsupervised iEEG exploration systems, and thus to enhance the surgical management of epilepsy.cs
dc.description.markAcs
dc.identifier.citationPŘIDALOVÁ, T. Hluboké učení pro lokalizaci epileptického ložiska [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2022.cs
dc.identifier.other137651cs
dc.identifier.urihttp://hdl.handle.net/11012/208148
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologiícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectepilepsyen
dc.subjectseizure onset zoneen
dc.subjectdeep learningen
dc.subjectautoencoderen
dc.subjectiEEGen
dc.subjectepilepsycs
dc.subjectseizure onset zonecs
dc.subjectdeep learningcs
dc.subjectautoencodercs
dc.subjectiEEGcs
dc.titleHluboké učení pro lokalizaci epileptického ložiskaen
dc.title.alternativeUnsupervised Deep Learning Approach for Seizure Onset Zone localization in Epilepsycs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2022-06-21cs
dcterms.modified2022-07-21-14:45:34cs
eprints.affiliatedInstitution.facultyFakulta elektrotechniky a komunikačních technologiícs
sync.item.dbid137651en
sync.item.dbtypeZPen
sync.item.insts2025.03.26 14:32:15en
sync.item.modts2025.01.15 17:37:14en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrstvícs
thesis.levelInženýrskýcs
thesis.nameIng.cs
Files
Original bundle
Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
7.47 MB
Format:
Adobe Portable Document Format
Description:
final-thesis.pdf
Loading...
Thumbnail Image
Name:
appendix-1.pdf
Size:
106.59 KB
Format:
Adobe Portable Document Format
Description:
appendix-1.pdf
Loading...
Thumbnail Image
Name:
Posudek-Vedouci prace-ProjektBeurteilungMAErst_Pridalova.pdf
Size:
81.3 KB
Format:
Adobe Portable Document Format
Description:
Posudek-Vedouci prace-ProjektBeurteilungMAErst_Pridalova.pdf
Loading...
Thumbnail Image
Name:
Posudek-Oponent prace-ProjektBeurteilungMAZweit_Pridalova.pdf
Size:
76.56 KB
Format:
Adobe Portable Document Format
Description:
Posudek-Oponent prace-ProjektBeurteilungMAZweit_Pridalova.pdf
Loading...
Thumbnail Image
Name:
review_137651.html
Size:
1.77 KB
Format:
Hypertext Markup Language
Description:
file review_137651.html
Collections