Hyperchaotic self-oscillations of two-stage class C amplifier with generalized transistors

Loading...
Thumbnail Image

Authors

Petržela, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

This paper yields process of development, numerical analysis, lumped circuit modeling, and experimental verification of a new hyperchaotic oscillator based on the fundamental topology of two-stage amplifier. Analyzed network structure contains two generalized bipolar transistors connected with common emitter. Both transistors are initially modeled as two-ports via full admittance matrix, considering linear backward trans-conductance and polynomial forward trans-conductance. As proved in paper, these two scalar nonlinearities can push amplifier to exhibit robust hyperchaotic behavior with significantly high Kaplan-Yorke dimension. Regions of chaos and hyperchaos in a space of admittance parameters associated with both transistors are specified following the concept of positive values of Lyapunov exponents. Long time structural stability of generated hyperchaotic waveforms is proved by construction of flow-equivalent electronic circuit and experimental measurement, that is by screenshots captured by oscilloscope.
This paper yields process of development, numerical analysis, lumped circuit modeling, and experimental verification of a new hyperchaotic oscillator based on the fundamental topology of two-stage amplifier. Analyzed network structure contains two generalized bipolar transistors connected with common emitter. Both transistors are initially modeled as two-ports via full admittance matrix, considering linear backward trans-conductance and polynomial forward trans-conductance. As proved in paper, these two scalar nonlinearities can push amplifier to exhibit robust hyperchaotic behavior with significantly high Kaplan-Yorke dimension. Regions of chaos and hyperchaos in a space of admittance parameters associated with both transistors are specified following the concept of positive values of Lyapunov exponents. Long time structural stability of generated hyperchaotic waveforms is proved by construction of flow-equivalent electronic circuit and experimental measurement, that is by screenshots captured by oscilloscope.

Description

Citation

IEEE Access. 2021, vol. 9, issue 4, p. 62182-62194.
https://ieeexplore.ieee.org/document/9409077

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO