Electrochemical Characterization of Various Synthesized Quantum Dots and the Effect of Aging and Storage Way

Loading...
Thumbnail Image

Authors

Hynek, David
Tmejová, Kateřina
Milosavljević, Vedran
Moulick, Amitava
Kopel, Pavel
Adam, Vojtěch
Kizek, René

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

ESG

Abstract

New type of quantum dots (QDs) are synthesized using various types of passivators, thus the question of their stability and way of storage is still opened not only due to characterization but also due to their wide application (chemistry, chemical biology and biomedicine, gene technology, tumour biology investigation, and fluorescent labelling). In our study, we are interested in the electrochemical changes as a result of aging and storage. We employed a series of aqueous solutions of QDs from various materials with different capping agents (PbS and CuS capped with 3-mercaptopropionic acid, CdS and CdTe capped with mercaptosuccinic acid) and the changes in typical peaks for metals and passivators (acids) were detected by difference pulse voltammetry, after 28 days storage in daylight (25oC) and dark (4oC). Anodic stripping difference pulse voltammetry offers simple and inexpensive approach for monitoring of nanoscaled products behaviour in time, based on evaluation of both - metal and passivator peak.
New type of quantum dots (QDs) are synthesized using various types of passivators, thus the question of their stability and way of storage is still opened not only due to characterization but also due to their wide application (chemistry, chemical biology and biomedicine, gene technology, tumour biology investigation, and fluorescent labelling). In our study, we are interested in the electrochemical changes as a result of aging and storage. We employed a series of aqueous solutions of QDs from various materials with different capping agents (PbS and CuS capped with 3-mercaptopropionic acid, CdS and CdTe capped with mercaptosuccinic acid) and the changes in typical peaks for metals and passivators (acids) were detected by difference pulse voltammetry, after 28 days storage in daylight (25oC) and dark (4oC). Anodic stripping difference pulse voltammetry offers simple and inexpensive approach for monitoring of nanoscaled products behaviour in time, based on evaluation of both - metal and passivator peak.

Description

Citation

International Journal of Electrochemical Science. 2015, vol. 10, issue 2, p. 1117-1127.
http://www.electrochemsci.org/papers/vol10/100201117.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO