An Intelligent Denoising Method for Jamming Pattern Recognition under Noisy Conditions

dc.contributor.authorYao, C. H.
dc.contributor.authorLi, Y.
dc.contributor.authorChen, Y. F.
dc.contributor.authorCheng, K. X.
dc.coverage.issue2cs
dc.coverage.volume33cs
dc.date.accessioned2024-05-28T13:14:39Z
dc.date.available2024-05-28T13:14:39Z
dc.date.issued2024-06cs
dc.description.abstractAccurate identification of jamming patterns is a crucial decision-making basis for anti-jamming in wireless communication systems. Current works still face challenges in fully considering the substantial influence of environmental noise on identification performance. To address the issue, this paper proposes an automatic threshold denoising-based deep learning model. The proposed method aims to mitigate the impact of noise on recognition performance within the feature space. Considering the challenges posed by non-linear transformations in deep denoising, a shallow denoising approach based on deep learning is proposed. By constructing a dataset of 12 jamming patterns under noisy conditions, the proposed method exhibits excellent recognition performance and maintains a low computational cost.en
dc.formattextcs
dc.format.extent322-328cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2024 vol. 33, č. 2, s. 322-328. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2024.0322en
dc.identifier.issn1210-2512
dc.identifier.urihttps://hdl.handle.net/11012/245671
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2024/24_02_0322_0328.pdfcs
dc.rightsCreative Commons Attribution 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectJamming pattern recognitionen
dc.subjectautomatic threshold denoisingen
dc.subjectshallow layer denoisingen
dc.subjectconvolutional neural networken
dc.titleAn Intelligent Denoising Method for Jamming Pattern Recognition under Noisy Conditionsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
24_02_0322_0328.pdf
Size:
3.7 MB
Format:
Adobe Portable Document Format

Collections