Reference v intrakraniálním EEG: implementace a analýza

Loading...
Thumbnail Image

Date

Authors

Uher, Daniel

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

PĹ™edstava záznamu mozkovĂ© aktivity bez zkreslujĂ­cĂ­ch artefaktĹŻ koluje ve vÄ›deckĂ˝ch kruzĂ­ch jiĹľ nÄ›kolik desĂ­tek let. ParazitnĂ­ jevy a nežádoucĂ­ sloĹľky dokáží vĂ˝raznÄ› komplikovat analĂ˝zu pacientskĂ©ho záznamu intrakraniálnĂ­ho elektroencefalografu (iEEG). S nástupem modernĂ­ technologie však zaÄŤaly pĹ™ibĂ˝vat novĂ© metody pro preciznĂ­ odstranÄ›nĂ­ zkreslujĂ­cĂ­ho šumu. Zde nastupuje koncept virtuálnĂ­ch referenÄŤnĂ­ch signálĹŻ, jakoĹľto nástroj pro eliminaci nežádoucĂ­ch komponent. V tĂ©to práci, metoda zaloĹľená na prĹŻmÄ›rovánĂ­ spolu s modernÄ›jšími metodami zaloĹľenĂ˝ch na analĂ˝ze nezávislĂ˝ch komponent (ICA) byly realizovány a testovány na rĹŻznĂ˝ch iEEG záznamech. Bylo zjištÄ›no, Ĺľe algoritmy zaloĹľenĂ© na ICA umoĹľĹujĂ­ lepší a pĹ™esnÄ›jší odhad referenÄŤnĂ­ho signálu v porovnánĂ­ s prĹŻmÄ›rovacĂ­ metodou. Na závÄ›r byly všechny navrĹľenĂ© metody implementovány do open-source Python knihovny 𝑟𝑒𝑓𝑠𝑖𝑔, která je veĹ™ejnÄ› dostupná, jednoduše instalovatelná a pĹ™ipravena k pouĹľitĂ­.
The idea of a artifact-free brain activity recording has been circling around the scientific world for a few decades. Parasitic phenomenons and unwanted components may significatntly complicate the analysis of intracranial electroencephalographic (iEEG) recordings. However, with the rise of modern technology, new methods for precise removal of noise artifacts started to emerge. Here we use the concept of virtual reference signals for the elimination of such unwanted components. In this work, the algorithms for reference signal estimation using common average based method as well as more recent methods based on independent component analysis (ICA) were realized and evaluated on a variety of iEEG data. It was found that the ICA-based algorithms allow obtaining more accurate estimation of the reference signal as compared to the average-based one. Finally, all the methods were implemented into a open-source Python package 𝑟𝑒𝑓𝑠𝑖𝑔, which is publicly available, easy to install and ready to use.

Description

Citation

UHER, D. Reference v intrakraniálním EEG: implementace a analýza [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2018.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Biomedicínská technika a bioinformatika

Comittee

prof. Ing. Valentýna Provazník, Ph.D. (předseda) prof. Ing. Martin Černý, Ph.D. (místopředseda) Ing. Marina Filipenská, Ph.D. (člen) Ing. Oto Janoušek, Ph.D. (člen) Ing. Vratislav Čmiel, Ph.D. (člen) prof. MUDr. Marie Nováková, Ph.D. (člen)

Date of acceptance

2018-06-14

Defence

Student prezentoval výsledky své práce a komise byla seznámena s posudky. Ing. Janoušek položil otázku: Proč chcete restaurovat výslednou amplitudu signálu? Student obhájil bakalářskou práci a odpověděl na otázky členů komise a oponenta.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO