Near-field digital holography: a tool for plasmon phase imaging

Loading...
Thumbnail Image

Authors

Viewegh, Petr
Kvapil, Michal
Bouchal, Petr
Édes, Zoltán
Šamořil, Tomáš
Hrtoň, Martin
Ligmajer, Filip
Křápek, Vlastimil
Šikola, Tomáš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry
Altmetrics

Abstract

The knowledge of the phase distribution of near electromagnetic field has become very important for many applications. However, its experimental observation is still technologically very demanding task. In this work, we propose a novel method for the measurement of the phase distribution of near electric field based on the principles of phase-shifting digital holography. In contrast with previous methods the holographic interference occurs already in the near field and the phase distribution can be determined purely from the scanning near-field optical microscopy measurements without need of additional far-field interferometric methods. This opens a way towards onchip phase imaging. We demonstrate the capabilities of the proposed method by reconstruction of the phase difference between interfering surface plasmon waves and by imaging the phase of single surface plasmon wave. We also demonstrate a selectivity of the method towards individual components of the field.
The knowledge of the phase distribution of near electromagnetic field has become very important for many applications. However, its experimental observation is still technologically very demanding task. In this work, we propose a novel method for the measurement of the phase distribution of near electric field based on the principles of phase-shifting digital holography. In contrast with previous methods the holographic interference occurs already in the near field and the phase distribution can be determined purely from the scanning near-field optical microscopy measurements without need of additional far-field interferometric methods. This opens a way towards onchip phase imaging. We demonstrate the capabilities of the proposed method by reconstruction of the phase difference between interfering surface plasmon waves and by imaging the phase of single surface plasmon wave. We also demonstrate a selectivity of the method towards individual components of the field.

Description

Citation

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO