Zero-field spin wave turns

Loading...
Thumbnail Image

Authors

Klíma, Jan
Wojewoda, Ondřej
Roučka, Václav
Molnár, Tomáš
Holobrádek, Jakub
Urbánek, Michal

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

AIP Publishing
Altmetrics

Abstract

Spin-wave computing, a potential successor to CMOS-based technologies, relies on the efficient manipulation of spin waves for information processing. While basic logic devices such as magnon transistors, gates, and adders have been experimentally demonstrated, the challenge for complex magnonic circuits lies in steering spin waves through sharp turns. In this study, we demonstrate with micromagnetic simulations and Brillouin light scattering microscopy experiments, that dipolar spin waves can propagate through 90 degrees turns without distortion. The key lies in carefully designed in-plane magnetization landscapes, addressing challenges posed by anisotropic dispersion. The experimental realization of the required magnetization landscape is enabled by spatial manipulation of the uniaxial anisotropy using corrugated magnonic waveguides. The findings presented in this work should be considered in any magnonic circuit design dealing with anisotropic dispersion and spin wave turns.
Spin-wave computing, a potential successor to CMOS-based technologies, relies on the efficient manipulation of spin waves for information processing. While basic logic devices such as magnon transistors, gates, and adders have been experimentally demonstrated, the challenge for complex magnonic circuits lies in steering spin waves through sharp turns. In this study, we demonstrate with micromagnetic simulations and Brillouin light scattering microscopy experiments, that dipolar spin waves can propagate through 90 degrees turns without distortion. The key lies in carefully designed in-plane magnetization landscapes, addressing challenges posed by anisotropic dispersion. The experimental realization of the required magnetization landscape is enabled by spatial manipulation of the uniaxial anisotropy using corrugated magnonic waveguides. The findings presented in this work should be considered in any magnonic circuit design dealing with anisotropic dispersion and spin wave turns.

Description

Citation

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO