Tracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data Fusion

dc.contributor.authorDorazil, Jancs
dc.contributor.authorRepp, Renecs
dc.contributor.authorKropfreiter, Thomascs
dc.contributor.authorPrüller, Richardcs
dc.contributor.authorŘíha, Kamilcs
dc.contributor.authorHlawatsch, Franzcs
dc.coverage.issue1cs
dc.coverage.volume8cs
dc.date.issued2020-12-01cs
dc.description.abstractAnalyzing the motion of the common carotid artery (CCA) wall yields effective indicators for atherosclerosis. In this work, we propose a state-space model and a tracking method for estimating the time-varying CCA wall radius from a B-mode ultrasound sequence of arbitrary length. We employ an unscented Kalman filter that fuses two sets of measurements produced by an optical flow algorithm and a CCA wall localization algorithm. This fusion-and-tracking approach ensures that feature drift, which tends to impair optical flow based methods, is compensated in a temporally consistent manner. Simulation results show that the proposed method outperforms a recently proposed optical flow based method.en
dc.description.abstractAnalyzing the motion of the common carotid artery (CCA) wall yields effective indicators for atherosclerosis. In this work, we propose a state-space model and a tracking method for estimating the time-varying CCA wall radius from a B-mode ultrasound sequence of arbitrary length. We employ an unscented Kalman filter that fuses two sets of measurements produced by an optical flow algorithm and a CCA wall localization algorithm. This fusion-and-tracking approach ensures that feature drift, which tends to impair optical flow based methods, is compensated in a temporally consistent manner. Simulation results show that the proposed method outperforms a recently proposed optical flow based method.en
dc.formattextcs
dc.format.extent222506-222519cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE Access. 2020, vol. 8, issue 1, p. 222506-222519.en
dc.identifier.doi10.1109/ACCESS.2020.3041796cs
dc.identifier.issn2169-3536cs
dc.identifier.orcid0000-0002-3974-0597cs
dc.identifier.orcid0000-0002-6196-5215cs
dc.identifier.other167451cs
dc.identifier.urihttp://hdl.handle.net/11012/196465
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofIEEE Accesscs
dc.relation.urihttps://doi.org/10.1109/ACCESS.2020.3041796cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2169-3536/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectAtherosclerosisen
dc.subjectdata fusionen
dc.subjectunscented Kalman Filteren
dc.subjectmotion estimationen
dc.subjectultrasonographyen
dc.subjectcarotid arteryen
dc.subjectmedical imagingen
dc.subjectultrasound imagingen
dc.subjectAtherosclerosis
dc.subjectdata fusion
dc.subjectunscented Kalman Filter
dc.subjectmotion estimation
dc.subjectultrasonography
dc.subjectcarotid artery
dc.subjectmedical imaging
dc.subjectultrasound imaging
dc.titleTracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data Fusionen
dc.title.alternativeTracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data Fusionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-167451en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:12:10en
sync.item.modts2025.10.14 10:22:48en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
09274301.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Description:
09274301.pdf