Detekce objektů pomocí Kinectu

Loading...
Thumbnail Image

Date

Authors

Řehánek, Martin

Mark

C

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

S příchodem zařízení Kinect se otevřely možnosti, jak jednoduše využít hloubku obrazu ve zpracování obrazu. Cílem této práce je popsat metodu, kterou jsem navrhnul pro rozpoznávání a detekci objektů v hloubkové mapě. Pro rozpoznávání objektů použiji metodu Bag of Words, ve které jako deskriptor hloubkové mapy použiji metodu Spin Image. Spin Image je jeden z několika přístupů k popisu hloubkové mapy, které ve své práci popíši. O vyhledání objektu v obraze se postará metoda klouzajícího okna, která je vylepšena o využití hloubkové informace pro zrychlení prohledávání.
With the release of the Kinect device new possibilities appeared, allowing a simple use of image depth in image processing. The aim of this thesis is to propose a method for object detection and recognition in a depth map. Well known method Bag of Words and a descriptor based on Spin Image method are used for the object recognition. The Spin Image method is one of several existing approaches to depth map which are described in this thesis. Detection of object in picture is ensured by the sliding window technique. That is improved and speeded up by utilization of the depth information.

Description

Citation

ŘEHÁNEK, M. Detekce objektů pomocí Kinectu [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2012.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Počítačová grafika a multimédia

Comittee

prof. Dr. Ing. Jan Černocký (předseda) prof. Ing. Tomáš Vojnar, Ph.D. (místopředseda) doc. Mgr. Daniela Chudá, Ph.D. (člen) doc. Ing. Přemysl Kršek, Ph.D. (člen) RNDr. Marek Rychlý, Ph.D. (člen) Ing. Josef Strnadel, Ph.D. (člen)

Date of acceptance

2012-06-18

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se pak seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm C. Otázky u obhajoby: Obrázky v datové sadě, kterou jste použil v testech, mají různou velikost. Kompenzoval jste toto nějak? Mohla mít různá velikosti vliv na výsledky? Jaké SVM klasifikátory jste použil, jak efektivní je jejích výpočet? Proč jste nevyhodnotil přímo úspěšnost detekce objektů?  Jakou úspěšnost a výpočetní náročnost mají existující metody detekce objektů z RGB-D?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO