Potential of Prosodic Features to Estimate Degree of Parkinson's Disease Severity
Loading...
Date
2016
Authors
Galáž, Zoltán
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract
This paper deals with non-invasive and objective Parkinson’s disease (PD) severity estimation. For this purpose, prosodic speech features expressing monopitch, monoloudness, and speech rate abnormalities were extracted from recordings of stress-modified reading task acquired from 72 patients with idiopathic PD. Using a single feature regression (esimating values of subjective clinical rating scales) with classification and regression algorithm, following performance in terms of root mean squared error was achieved: 10.72 (UPDRS III), 2.16 (UPDRS IV), 4.76 (FOG-Q), 17.89 (NMSS), 2.13 (RBDSQ), 6.43 (ACE-R), 1.41 (MMSE), and 4.82 (BDI). These results show a promising potential of prosodic speech features in the field of objective assessment of PD severity.
Description
Citation
Proceedings of the 22nd Conference STUDENT EEICT 2016. s. 533-537. ISBN 978-80-214-5350-0
http://www.feec.vutbr.cz/EEICT/
http://www.feec.vutbr.cz/EEICT/
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií