A 0.3 V Current Differencing Buffered Amplifier and Its Application in Current-Mode Third-Order Low-Pass Filters

Loading...
Thumbnail Image

Authors

Khateb, Fabian
Kumngern, Montree
Kulej, Tomasz

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

This paper introduces an innovative low-voltage, low-power current differencing buffered amplifier (CDBA). The proposed CDBA utilizes a bulk-driven MOS transistor operating in the subthreshold region, allowing it to function effectively at low supply voltages while minimizing power consumption, making it suitable for sensor and biomedical applications. To demonstrate the performance of the proposed CDBA, it is incorporated into the design of a current-mode, third-order low-pass filter that is specifically tailored for bio-sensing applications. Both the CDBA and the low-pass filter are designed and simulated in Cadence Virtuoso using the TSMC 0.18 mu m CMOS process. The CDBA operates at a supply voltage of 0.3 V, consuming 170 nW of power, while the third-order low-pass filter achieves a dynamic range of 57.2 dB with a total harmonic distortion (THD) of 1%.
This paper introduces an innovative low-voltage, low-power current differencing buffered amplifier (CDBA). The proposed CDBA utilizes a bulk-driven MOS transistor operating in the subthreshold region, allowing it to function effectively at low supply voltages while minimizing power consumption, making it suitable for sensor and biomedical applications. To demonstrate the performance of the proposed CDBA, it is incorporated into the design of a current-mode, third-order low-pass filter that is specifically tailored for bio-sensing applications. Both the CDBA and the low-pass filter are designed and simulated in Cadence Virtuoso using the TSMC 0.18 mu m CMOS process. The CDBA operates at a supply voltage of 0.3 V, consuming 170 nW of power, while the third-order low-pass filter achieves a dynamic range of 57.2 dB with a total harmonic distortion (THD) of 1%.

Description

Citation

Applied Sciences-Basel. 2025, vol. 15, issue 10, p. 1-14.
https://doi.org/10.3390/app15105740

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO