Pascal-Interpolation-Based Noninteger Delay Filter and Low-Complexity Realization

Loading...
Thumbnail Image
Date
2015-12
Authors
Soontornwong, Parinya
Chivapreecha, Sorawat
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
This paper proposes a new method for designing the polynomial-interpolation-type noninteger-delay filter with a new structure formulation. Since the design formulation and the new realization structure are based on the discrete Pascal transform (DPT) and Pascal interpolation, we call the resulting filter Pascal noninteger-delay filter. The kth-order Pascal polynomial is used to pass through the given (k+1) data points in achieving the kth-order Pascal filter. The Pascal noninteger-delay filter is a real-time filter that consists of two sections, which can be realized into the front-section and the back-section. The front-section contains multiplication-free digital filters, and the number of multiplications in the back-section just linearly increases as order becomes high. Since the new Pascal filter has low complexity and structure can adjust non-integer delay online, it is more suited for fast delay tuning. Consequently, the polynomial-interpolation-type delay filter can be achieved by using the Pascal approach with high efficiency and low-complexity structure.
Description
Citation
Radioengineering. 2015 vol. 24, č. 4, s. 1002-1012. ISSN 1210-2512
http://www.radioeng.cz/fulltexts/2015/15_04_1002_1012.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 3.0 Unported License
http://creativecommons.org/licenses/by/3.0/
Collections
Citace PRO