Convolutional Neural Networks for Profiled Side-channel Analysis

dc.contributor.authorHou, Shourong
dc.contributor.authorZhou, Yujie
dc.contributor.authorLiu, Hongming
dc.coverage.issue3cs
dc.coverage.volume28cs
dc.date.accessioned2020-04-30T11:26:15Z
dc.date.available2020-04-30T11:26:15Z
dc.date.issued2019-09cs
dc.description.abstractRecent studies have shown that deep learning algorithms are very effective for evaluating the security of embedded systems. The deep learning technique represented by Convolutional Neural Networks (CNNs) has proven to be a promising paradigm in the profiled side-channel analysis attacks. In this paper, we first proposed a novel CNNs architecture called DeepSCA. Considering that this work may be reproduced by other researchers, we conduct all experiments on the public ASCAD dataset, which provides electromagnetic traces of a masked 128-bit AES implementation. Our work confirms that DeepSCA significantly reduces the number of side-channel traces required to perform successful attacks on highly desynchronized datasets, which even outperforms the published optimized CNNs model. Additionally, we find that DeepSCA pre-trained from the synchronous traces works well in presence of desynchronization or jittering after a slight fine-tuning.en
dc.formattextcs
dc.format.extent651-658cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2019 vol. 28, č. 3, s. 651-658. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2019.0651en
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/186908
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2019/19_03_0651_0658.pdfcs
dc.rightsCreative Commons Attribution 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectSide-channel analysisen
dc.subjectdeep learningen
dc.subjectconvolutional neural networksen
dc.subjectDeepSCAen
dc.titleConvolutional Neural Networks for Profiled Side-channel Analysisen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
19_03_0651_0658.pdf
Size:
474.52 KB
Format:
Adobe Portable Document Format
Description:
Collections