Detekce začátku a konce komplexu QRS s využitím hlubokého učení

Loading...
Thumbnail Image
Date
Authors
Müller, Jakub
ORCID
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstract
Měření EKG je základním diagnostickým nástrojem zdravotního stavu srdce a automatizace jeho analýzy může přispět ve zdravotnictví k odhlečení pracovní zátěže personálu nebo ke zlepšení kvality automatické diagnostiky z nositelných zařízení. Tato práce se zaměřuje konkrétně na komplex QRS v signále EKG, s hlavním cílem aplikování metod hlubokého učení k detekci jeho počátku a konce. V teoretickém úvodu je čtenář seznámen s původem komplexu QRS a měřením EKG, umělými neuronovými sítěmi a hlubokým učením. Pro implementaci vlastní metody byla zvolena architektura U-Net modifikovaná pro 1D signály. Data byly čerpány z pěti veřejně přístupných databází, jejich předzpracování proběhlo v prostředí Matlab. Následoval přesun do prostředí Python kde byly realizovány části modelu s použitím knihoven TensorFlow a Keras, následné trénování, testování modelu a vyhodnocení výsledků.
ECG measurement isan essential diagnostic tool for cardiac health, and automation of its analysis can aid to our healthcare to relieve staff workload or improve the quality of automated diagnostics from wearable devices. This work focuses specifically on the QRS complex in the ECG signal, with the main goal of using deep learning methods to detect its onset and offset. In the theoretical introduction, the reader is introduced to the origin of the QRS complex and ECG measurements, artificial neural networks and deep learning. Modified architecture U-Net for 1D signals was chosen to implement the actual method. Data were extracted from five publicly available databases and preprocessed in Matlab. This was followed by moving to the Python environment where parts of the model were implemented using the TensorFlow and Keras libraries, subsequent training, testing of the model and evaluation of the results.
Description
Citation
MÜLLER, J. Detekce začátku a konce komplexu QRS s využitím hlubokého učení [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2024.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
bez specializace
Comittee
doc. Mgr. Ctirad Hofr, Ph.D. (předseda) Ing. Markéta Jakubíčková, Ph.D. (místopředseda) Ing. Martin Vítek, Ph.D. (člen) Ing. Martin Mézl, Ph.D. (člen) Ing. Jana Musilová, Ph.D. (člen) Ing. Radovan Smíšek, Ph.D. (člen)
Date of acceptance
2024-06-10
Defence
Student prezentoval výsledky své práce a komise byla seznámena s posudky. Student odpověděl na přiloženou otázku oponentky. Student diskutoval s komisí výsledky práce na databázi QTDB. Ing. Mézl položil otázku týkající se metrik optimalizace procesu učení. Student obhájil diplomovou práci a odpověděl na otázky členů komise a přiloženou otázku oponenta.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO