Sensitivity enriched multi-criterion decision making process for novel railway switches and crossings - a case study

Loading...
Thumbnail Image

Authors

Boghani, Hitesh C.
Ambur, Ramakrishnan
Blumenfeld, Marcelo
Saade, Louis
Goodall, Roger M.
Ward, Christopher P.
Plášek, Otto
Gofton, Neil
Morata, Miquel
Roberts, Clive

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Altmetrics

Abstract

Background: Despite their important role in railway operations, switches and crossings (S&C) have changed little since their conception over a century ago. It stands now that the existing designs for S&C are reaching their maximum point of incremental performance improvement, and only a radical redesign can overcome the constraints that current designs are imposing on railway network capacity. This paper describes the process of producing novel designs for next generation switches and crossings, as part of the S-CODE project. Methods: Given the many aspects that govern a successful S&C design, it is critical to adopt multi criteria decision making (MCDM) processes to identify a specific solution for the next generation of switches and crossings. However, a common shortcoming of these methods is that their results can be heavily influenced by external factors, such as uncertainty in criterium weighting or bias of the evaluators, for example. This paper therefore proposes a process based on the Pugh Matrix method to reduce such biases by using sensitivity analysis to investigate them and improve the reliability of decision making. Results: In this paper, we analysed the influences of three different external factors, measuring the sensitivity of ranking due to (a) weightings, (b) organisational and (c) discipline bias. The order of preference of the results was disturbed only to a minimum while small influences of bias were detected. Conclusions: Through this case study, we believe that the paper demonstrates an effective case study for a quantitative process that can improve the reliability of decision making.
Background: Despite their important role in railway operations, switches and crossings (S&C) have changed little since their conception over a century ago. It stands now that the existing designs for S&C are reaching their maximum point of incremental performance improvement, and only a radical redesign can overcome the constraints that current designs are imposing on railway network capacity. This paper describes the process of producing novel designs for next generation switches and crossings, as part of the S-CODE project. Methods: Given the many aspects that govern a successful S&C design, it is critical to adopt multi criteria decision making (MCDM) processes to identify a specific solution for the next generation of switches and crossings. However, a common shortcoming of these methods is that their results can be heavily influenced by external factors, such as uncertainty in criterium weighting or bias of the evaluators, for example. This paper therefore proposes a process based on the Pugh Matrix method to reduce such biases by using sensitivity analysis to investigate them and improve the reliability of decision making. Results: In this paper, we analysed the influences of three different external factors, measuring the sensitivity of ranking due to (a) weightings, (b) organisational and (c) discipline bias. The order of preference of the results was disturbed only to a minimum while small influences of bias were detected. Conclusions: Through this case study, we believe that the paper demonstrates an effective case study for a quantitative process that can improve the reliability of decision making.

Description

Citation

European Transport Research Review. 2021, vol. 13, issue 1, p. 1-14.
https://etrr.springeropen.com/articles/10.1186/s12544-020-00467-x

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO