Distribution of neutrons and protons in elongated targets

Loading...
Thumbnail Image

Authors

Zeman, Miroslav
Adam, Jindřich
Baldin, Anton Alexandrovich
Brunčiaková, Miriama
Gustov, S.A.
Katovský, Karel
Khushvaktov, Jurabek
Král, Dušan
Solnyshkin, Alexander A.
Svoboda, Josef

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

EDP Sciences
Altmetrics

Abstract

Analysis of neutron distribution was carried out for two elongated targets. The targets have cylindrical shape and are made of lead and carbon, respectively. The dimensions are approximately one meter in length and 19 cm in diameter. The targets were irradiated with 660 MeV proton beam at Phasotron accelerator at the Joint Institute for Nuclear Research. The total number of protons was 2.35(18)E15 for the experiment with carbon target and the total number of particles at the second experiment was 2.32(19)E15. The produced neutron field was monitored by cobalt threshold activation detectors at various positions. The activation detectors were measured by means of gamma spectroscopy using HPGe detectors. Reaction rates of different radionuclides produced in the activation detectors were determined and the results from both experiments were compared. The ratios were calculated for 7 reactions produced in cobalt detectors. The ratio of the reaction rates shows that the number of residual nuclei with higher threshold energies is higher for experiment with carbon target than for the experiment with the lead target.
Analysis of neutron distribution was carried out for two elongated targets. The targets have cylindrical shape and are made of lead and carbon, respectively. The dimensions are approximately one meter in length and 19 cm in diameter. The targets were irradiated with 660 MeV proton beam at Phasotron accelerator at the Joint Institute for Nuclear Research. The total number of protons was 2.35(18)E15 for the experiment with carbon target and the total number of particles at the second experiment was 2.32(19)E15. The produced neutron field was monitored by cobalt threshold activation detectors at various positions. The activation detectors were measured by means of gamma spectroscopy using HPGe detectors. Reaction rates of different radionuclides produced in the activation detectors were determined and the results from both experiments were compared. The ratios were calculated for 7 reactions produced in cobalt detectors. The ratio of the reaction rates shows that the number of residual nuclei with higher threshold energies is higher for experiment with carbon target than for the experiment with the lead target.

Description

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO