ECG signal classification based on SVM

but.event.date28.04.2016cs
but.event.titleStudent EEICT 2016cs
dc.contributor.authorSmíšek, Radovan
dc.date.accessioned2018-07-10T12:48:17Z
dc.date.available2018-07-10T12:48:17Z
dc.date.issued2016cs
dc.description.abstractCardiovascular diseases nowadays represent the most common cause of death in Western countries. Long-term ECG recording is modern method, because it allows to detect sporadically occurring pathology. We designed an automatic classifier to detect five pathologies (AAMI standard) by SVM method. The classifier was tested on the entire MIT-BIH Arrhythmia Database with an accuracy of 99.17 %. We also compared the quality of parameters entering the classifier.en
dc.formattextcs
dc.format.extent365-369cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings of the 22nd Conference STUDENT EEICT 2016. s. 365-369. ISBN 978-80-214-5350-0cs
dc.identifier.isbn978-80-214-5350-0
dc.identifier.urihttp://hdl.handle.net/11012/83957
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings of the 22nd Conference STUDENT EEICT 2016en
dc.relation.urihttp://www.feec.vutbr.cz/EEICT/cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectECG classificationen
dc.subjectsupport vector machinesen
dc.subjectSVMen
dc.subjectMIT-BIH databaseen
dc.titleECG signal classification based on SVMen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
365-smisek.pdf
Size:
761.35 KB
Format:
Adobe Portable Document Format
Description: