GPON PLOAMd Message Analysis Using Supervised Neural Networks
dc.contributor.author | Tomašov, Adrián | cs |
dc.contributor.author | Holík, Martin | cs |
dc.contributor.author | Oujezský, Václav | cs |
dc.contributor.author | Horváth, Tomáš | cs |
dc.contributor.author | Münster, Petr | cs |
dc.coverage.issue | 22 | cs |
dc.coverage.volume | 10 | cs |
dc.date.issued | 2020-11-18 | cs |
dc.description.abstract | This paper discusses the possibility of analyzing the orchestration protocol used in gigabit-capable passive optical networks (GPONs). Considering the fact that a GPON is defined by the International Telecommunication Union Telecommunication sector (ITU-T) as a set of recommendations, implementation across device vendors might exhibit few differences, which complicates analysis of such protocols. Therefore, machine learning techniques are used (e.g., neural networks) to evaluate differences in GPONs among various device vendors. As a result, this paper compares three neural network models based on different types of recurrent cells and discusses their suitability for such analysis. | en |
dc.format | text | cs |
dc.format.extent | 1-12 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Applied Sciences - Basel. 2020, vol. 10, issue 22, p. 1-12. | en |
dc.identifier.doi | 10.3390/app10228139 | cs |
dc.identifier.issn | 2076-3417 | cs |
dc.identifier.orcid | 0000-0003-1759-3482 | cs |
dc.identifier.orcid | 0000-0002-8031-1663 | cs |
dc.identifier.orcid | 0000-0001-7629-6299 | cs |
dc.identifier.orcid | 0000-0001-8659-8645 | cs |
dc.identifier.orcid | 0000-0002-4651-8353 | cs |
dc.identifier.other | 166029 | cs |
dc.identifier.researcherid | AID-4031-2022 | cs |
dc.identifier.researcherid | Q-9784-2017 | cs |
dc.identifier.scopus | 57218878297 | cs |
dc.identifier.scopus | 57160133400 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/196655 | |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartof | Applied Sciences - Basel | cs |
dc.relation.uri | https://www.mdpi.com/2076-3417/10/22/8139/htm | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2076-3417/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | GPON | en |
dc.subject | GRU | en |
dc.subject | LSTM | en |
dc.subject | machine learning | en |
dc.subject | neural network | en |
dc.subject | RNN | en |
dc.title | GPON PLOAMd Message Analysis Using Supervised Neural Networks | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-166029 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:42:12 | en |
sync.item.modts | 2025.01.17 15:36:48 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- applsci1008139.pdf
- Size:
- 513.58 KB
- Format:
- Adobe Portable Document Format
- Description:
- applsci1008139.pdf