Automatická segmentace řeči pro VHF kanál

Loading...
Thumbnail Image

Date

Authors

Nováková, Mária

Mark

B

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Výskyt hluku a šumu v pozadí audio leteckej komunikácie je problémom, ktorému denne čelia operanti riadenia letovej prevádzky. Aby bola zaistená bezpečná letecká preprava, komunikácia medzi vežou a lietatlom musí byť čo najefektívnejšia. Hlavnú rolu vo vylepšovaní kvality komunikácie hrá detekcia hlasovej aktivity. Správna detekcia reči je nevyhnutá pre rozpoznanie začiatku komunikácie pre systémy. Začiatok komunikácie začína stlačením tlačítka push-to-talk pomocou rádiového systému. Na rozpoznávanie reči existujú rôzne prístupy a implementácie. Za pomoci neurónových sietí sa dá detekcia reči upresniť. Výhodou používania umelej inteligencie je jej adaptácia na nové podnety. Táto práca ponúka riešenie na detekciu reči a push-to-talk udalostí v leteckej komunikácií. Navrhnuté riešenia budú evaluované a porovnané. Na záver, dostupná implementácia GPVAD je prepracovaná na riešenie tohto problému. Strojové učenie má zas a znova príležitosť predviesť svoje schopnosti.
A noisy environment in air traffic communication is an unavoidable problem. The communication between the control tower and the pilot should be the most reliable and effective. That is why voice activity detection is crucial for recognising the start of the speech segment of the communicants for automated systems. The speakers take turns providing information by pressing the push-to-talk button. To detect voice activity, various approaches are used. Even though these methods are effective, machine learning can easily outshine them. Neural networks are widely used in voice activity detection as well as in other areas. Properly trained models are efficient and adaptable. In this thesis, a solution for voice activity detection together with push-to-talk detection is proposed. Proposed models are evaluated and compared. The adaptation of the GPVAD approach is discussed and compared to the proposed models. Neural networks will have their chance to once again prove that they are suitable for any task.

Description

Citation

NOVÁKOVÁ, M. Automatická segmentace řeči pro VHF kanál [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2023.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Informační technologie

Comittee

prof. Dr. Ing. Jan Černocký (předseda) doc. Ing. Zdeněk Vašíček, Ph.D. (člen) Ing. Václav Šátek, Ph.D. (člen) Ing. Filip Orság, Ph.D. (člen) Ing. Vladimír Bartík, Ph.D. (člen)

Date of acceptance

2023-06-15

Defence

Studentka nejprve prezentovala výsledky, kterých dosáhla v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Studentka následně odpověděla na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studentky na položené otázky rozhodla práci hodnotit stupněm B.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO