Determination of transient heat transfer by cooling channel in high-pressure die casting using inverse method

dc.contributor.authorBoháček, Jancs
dc.contributor.authorMráz, Kryštofcs
dc.contributor.authorHvožďa, Jiřícs
dc.contributor.authorLang, Filipcs
dc.contributor.authorRaudenský, Miroslavcs
dc.contributor.authorVakhrushev, Alexandercs
dc.contributor.authorKarimi-Sibaki, Ebrahimcs
dc.contributor.authorKharicha, Abdellahcs
dc.coverage.issue1cs
dc.coverage.volume2766cs
dc.date.issued2024-05-01cs
dc.description.abstractComplex shapes of aluminum castings are typically manufactured during the short cycle process known as the high-pressure die casting (HPDC). High productivity is ensured by introducing die cooling through a system of channels, die inserts or jet coolers. Die cooling can also effectively help in reducing internal porosity in cast components. Accurate simulations based on sophisticated numerical models require accurate input data such as material properties, initial and boundary conditions. Although the heat is dominantly dissipated through die cooling, indicating the importance of knowing precise thermal boundary conditions, open literature lacks a detailed information about the spatial distribution of heat transfer coefficient. This study presents an inverse method to determine accurate heat transfer coefficients of a die insert based on temperature measurements in multiple points by 0.5 mm K-type thermocouples and a subsequent solution of the two-dimensional inverse heat conduction problem. The solver was built in the open-source CFD code OpenFOAM and the free library for nonlinear optimization NLopt. The results are presented for the commonly used 10 mm die insert with a hemispherical tip and coolant flow rates ranging from 100 l/h to 200 l/h. Heat transfer coefficients reach values well above 50 kW/m2K in the hemispherical tip, which is followed by a secondary peak and then a gradual drop to values around 1 kW/m2K further downstream.en
dc.formattextcs
dc.format.extent1-6cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Physics: Conference Series. 2024, vol. 2766, issue 1, p. 1-6.en
dc.identifier.doi10.1088/1742-6596/2766/1/012197cs
dc.identifier.issn1742-6596cs
dc.identifier.orcid0000-0003-3319-4254cs
dc.identifier.orcid0000-0002-4521-4438cs
dc.identifier.orcid0000-0002-4444-4485cs
dc.identifier.orcid0000-0001-7380-5828cs
dc.identifier.orcid0000-0001-7116-9274cs
dc.identifier.other188798cs
dc.identifier.researcheridC-2078-2018cs
dc.identifier.researcheridAAZ-5704-2021cs
dc.identifier.researcheridAAQ-1466-2021cs
dc.identifier.researcheridG-9625-2015cs
dc.identifier.scopus55213548700cs
dc.identifier.scopus57226704481cs
dc.identifier.scopus57222749606cs
dc.identifier.scopus57216709671cs
dc.identifier.urihttp://hdl.handle.net/11012/249507
dc.language.isoencs
dc.publisherIOP Publishingcs
dc.relation.ispartofJournal of Physics: Conference Seriescs
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1742-6596/2766/1/012197cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1742-6596/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectinverse heat conduction problemen
dc.subjectinverse tasken
dc.subjectOpenFOAMen
dc.subjectdie inserten
dc.subjectjet coolingen
dc.subjectoptimizationen
dc.titleDetermination of transient heat transfer by cooling channel in high-pressure die casting using inverse methoden
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/TA0/TN/TN02000010cs
sync.item.dbidVAV-188798en
sync.item.dbtypeVAVen
sync.item.insts2025.02.18 12:36:21en
sync.item.modts2025.02.13 12:32:02en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř přenosu tepla a prouděnícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bohacek_2024_J._Phys.__Conf._Ser._2766_012197.pdf
Size:
817.13 KB
Format:
Adobe Portable Document Format
Description:
file Bohacek_2024_J._Phys.__Conf._Ser._2766_012197.pdf