Determination of transient heat transfer by cooling channel in high-pressure die casting using inverse method

Loading...
Thumbnail Image

Authors

Boháček, Jan
Mráz, Kryštof
Hvožďa, Jiří
Lang, Filip
Raudenský, Miroslav
Vakhrushev, Alexander
Karimi-Sibaki, Ebrahim
Kharicha, Abdellah

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

Complex shapes of aluminum castings are typically manufactured during the short cycle process known as the high-pressure die casting (HPDC). High productivity is ensured by introducing die cooling through a system of channels, die inserts or jet coolers. Die cooling can also effectively help in reducing internal porosity in cast components. Accurate simulations based on sophisticated numerical models require accurate input data such as material properties, initial and boundary conditions. Although the heat is dominantly dissipated through die cooling, indicating the importance of knowing precise thermal boundary conditions, open literature lacks a detailed information about the spatial distribution of heat transfer coefficient. This study presents an inverse method to determine accurate heat transfer coefficients of a die insert based on temperature measurements in multiple points by 0.5 mm K-type thermocouples and a subsequent solution of the two-dimensional inverse heat conduction problem. The solver was built in the open-source CFD code OpenFOAM and the free library for nonlinear optimization NLopt. The results are presented for the commonly used 10 mm die insert with a hemispherical tip and coolant flow rates ranging from 100 l/h to 200 l/h. Heat transfer coefficients reach values well above 50 kW/m2K in the hemispherical tip, which is followed by a secondary peak and then a gradual drop to values around 1 kW/m2K further downstream.
Complex shapes of aluminum castings are typically manufactured during the short cycle process known as the high-pressure die casting (HPDC). High productivity is ensured by introducing die cooling through a system of channels, die inserts or jet coolers. Die cooling can also effectively help in reducing internal porosity in cast components. Accurate simulations based on sophisticated numerical models require accurate input data such as material properties, initial and boundary conditions. Although the heat is dominantly dissipated through die cooling, indicating the importance of knowing precise thermal boundary conditions, open literature lacks a detailed information about the spatial distribution of heat transfer coefficient. This study presents an inverse method to determine accurate heat transfer coefficients of a die insert based on temperature measurements in multiple points by 0.5 mm K-type thermocouples and a subsequent solution of the two-dimensional inverse heat conduction problem. The solver was built in the open-source CFD code OpenFOAM and the free library for nonlinear optimization NLopt. The results are presented for the commonly used 10 mm die insert with a hemispherical tip and coolant flow rates ranging from 100 l/h to 200 l/h. Heat transfer coefficients reach values well above 50 kW/m2K in the hemispherical tip, which is followed by a secondary peak and then a gradual drop to values around 1 kW/m2K further downstream.

Description

Citation

Journal of Physics: Conference Series. 2024, vol. 2766, issue 1, p. 1-6.
https://iopscience.iop.org/article/10.1088/1742-6596/2766/1/012197

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO