Multidimensional Detection Of Outliers In Clinical Registers
Loading...
Date
Authors
Šiška, Branislav
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
ORCID
Abstract
Incorrect data in clinical registers can lead to inaccurate or wrong results. This project is aimed at monitoring and evaluation of data in clinical registers. Usual methods to identify incorrect data are one-dimensional statistical methods per each variable in the register. Proposed method finds outliers in data using machine learning combined with multidimensional statistical methods that transform all column variables of clinical register to one, representing one record of a patient in the register.
Description
Keywords
Citation
Proceedings of the 24th Conference STUDENT EEICT 2018. s. 279-281. ISBN 978-80-214-5614-3
http://www.feec.vutbr.cz/EEICT/
http://www.feec.vutbr.cz/EEICT/
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
sk
