Fourierova řada a její vlastnosti
Loading...
Date
Authors
ORCID
Advisor
Referee
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta strojního inženýrství
Abstract
Funkční řady, a zejména pak řady Fourierovy, jsou důležitým matematickým aparátem využívaným v rozmanitých technických oborech. Velmi podstatnou skupinu mezi funkčními řadami tvoří mocninné řady, které se pro svoji jednoduchost aplikují při řešení nejrůznějších úloh. Rozvojem funkce do mocninné řady, tj. Taylorovou řadou, rozumíme nalezení mocninné řady, jejímž součtem je právě daná funkce. Tyto rozvoje jsou vhodné především v tom smyslu, že řadu operací (vyčíslení funkčních hodnot, limit, derivací a integrálů) lze provést pro tyto rozvoje snadněji, než pro funkce samotné. Fourierovy řady se používají při studiu jevů s periodickým charakterem. Výhodou těchto řad je skutečnost, že požadavky kladené na jejich konvergenci k rozvíjené funkci jsou slabší než v případě rozvojů do Taylorových řad. Rovněž výpočet koeficientů může být jednodušší než u řad Taylorových. Rozvojů funkcí do Fourierových řad se s úspěchem používá především k hledání (periodických) řešení obyčejných a parciálních diferenciálních rovnic. Tuto metodu řešení nazýváme Fourierovou metodou či Fourierovou metodou separací proměnných pro způsob konstrukce speciálních funkcí.
The functional series, and especially the Fourier series, are an important mathematical apparatus exploited in the various technical branches. A very essential group of the functional series are the power series, which are applied because of their simplicity for solving of the many problems. An expansion of the function to the power series, i. e. the Taylor expansion, whose sum is the expanded function. These expansions are suitable for evaluation of operations, such as calculation of functional values, limits, derivatives and integrals. Calculations of these expansions are easier than of the functions theirself. The Fourier series are used for studies of events with periodic character. An advantage of the Fourier series is the fact, that the requirements for convergency are weaker than in case of the Taylor expansions. Likewise, calculation of the coefficients can be more simple than in the Taylor expansions. Expansions of functions to the Fourier series are used especially for solving ordinary and partial differential equations. This method of solving is known as the Fourier method or the Fourier method of variable separation.
The functional series, and especially the Fourier series, are an important mathematical apparatus exploited in the various technical branches. A very essential group of the functional series are the power series, which are applied because of their simplicity for solving of the many problems. An expansion of the function to the power series, i. e. the Taylor expansion, whose sum is the expanded function. These expansions are suitable for evaluation of operations, such as calculation of functional values, limits, derivatives and integrals. Calculations of these expansions are easier than of the functions theirself. The Fourier series are used for studies of events with periodic character. An advantage of the Fourier series is the fact, that the requirements for convergency are weaker than in case of the Taylor expansions. Likewise, calculation of the coefficients can be more simple than in the Taylor expansions. Expansions of functions to the Fourier series are used especially for solving ordinary and partial differential equations. This method of solving is known as the Fourier method or the Fourier method of variable separation.
Description
Citation
SLADKÁ, P. Fourierova řada a její vlastnosti [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2008.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Matematické inženýrství
Comittee
prof. RNDr. Jan Čermák, CSc. (předseda)
doc. RNDr. Jiří Klaška, Dr. (místopředseda)
RNDr. Radovan Potůček, Ph.D. (člen)
RNDr. Ludmila Chvalinová, CSc. (člen)
doc. Ing. Pavel Štarha, Ph.D. (člen)
Date of acceptance
2008-06-18
Defence
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení