Continuous Sustainable Production of Biobased Multicomponent Enhanced Resin for SLA 3D Printing

Loading...
Thumbnail Image

Authors

Jašek, Vojtěch
Bartoš, Otakar
Lavrinčíková, Veronika
Fučík, Jan
Figalla, Silvestr
Kameníková, Eliška
Přikryl, Radek

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society
Altmetrics

Abstract

This work focuses on biobased reactive diluents' synthesis, continuing with optimized oil-based resin precursor production. Our approach introduces vanillin methacrylate (VanMMA), cinnamyl methacrylate (CinMMA), and vanillyl dimethacrylate (VanDiMMA) synthesis using methacrylic anhydride. The introduced approach involves an innovative and available catalyst, potassium acetate, which possesses much suitable potential compared with the usually used 4-dimethylaminopyridine (DMAP). Moreover, we separated the formed secondary product, methacrylic acid (MA), and used it to modify rapeseed oil to prepare a curable thermoset. All synthesized products were structurally verified via complex cross-analysis (NMR, ESI-MS, and FTIR). The reactive systems were mixed to form a multicomponent mixture appropriate for stereolithography (SLA) and 3D printing. It was found that VanDiMMA exhibited comparable diluting properties to the commercially available and used compound, isobornyl methacrylate (IBOMA), while achieving better mechanical, thermo-mechanical, and thermal properties than IBOMA. VanDiMMA-containing SLA resin reached a tensile strength of 12.7 +/- 0.3 MPa, a flexural strength of 16.8 +/- 0.4 MPa, a storage modulus of 570 MPa at 30 degrees C, a glass-transition temperature of 83.7 degrees C, and the heat-resistant index of 169.5 degrees C.
This work focuses on biobased reactive diluents' synthesis, continuing with optimized oil-based resin precursor production. Our approach introduces vanillin methacrylate (VanMMA), cinnamyl methacrylate (CinMMA), and vanillyl dimethacrylate (VanDiMMA) synthesis using methacrylic anhydride. The introduced approach involves an innovative and available catalyst, potassium acetate, which possesses much suitable potential compared with the usually used 4-dimethylaminopyridine (DMAP). Moreover, we separated the formed secondary product, methacrylic acid (MA), and used it to modify rapeseed oil to prepare a curable thermoset. All synthesized products were structurally verified via complex cross-analysis (NMR, ESI-MS, and FTIR). The reactive systems were mixed to form a multicomponent mixture appropriate for stereolithography (SLA) and 3D printing. It was found that VanDiMMA exhibited comparable diluting properties to the commercially available and used compound, isobornyl methacrylate (IBOMA), while achieving better mechanical, thermo-mechanical, and thermal properties than IBOMA. VanDiMMA-containing SLA resin reached a tensile strength of 12.7 +/- 0.3 MPa, a flexural strength of 16.8 +/- 0.4 MPa, a storage modulus of 570 MPa at 30 degrees C, a glass-transition temperature of 83.7 degrees C, and the heat-resistant index of 169.5 degrees C.

Description

Citation

ACS Materials Au. 2025, vol. 5, issue 3, p. 580-592.
https://pubs.acs.org/doi/10.1021/acsmaterialsau.5c00014

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO