Codec Detection from Speech

Loading...
Thumbnail Image

Date

Authors

Jon, Josef

Mark

B

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Tato práce se zabývá detekcí kodeků z komprimovaného řečového signálu. Cílem bylo zjistit, jaké charakteristiky rozlišují jednotlivé kodeky a následně vytvořit prostředí vhodné pro experimenty s různými typy a konfiguracemi klasifikátorů. Použity byly Support vector machines a především neuronové sítě, které byly vytvořeny pomocí nástroje Keras. Hlavním přínosem této práce je experimentální část, ve které je analyzován vliv různých parametrů neuronové sítě. Po nalezení nejvhodnější kombinace parametrů dosáhla síť přesnosti klasifikace přes 98% na testovací sadě obsahující data z 6 kodeků.
This thesis deals with codec detection from compressed speech signal. The primary goal was to identify which features distinguish selected codecs, and then create an environment facilitating experiments with various types of classifiers and their configurations. Support vector machines and neural networks, modeled using the Keras library, were used. The main contribution of this work is the experimental part, in which the effects of the neural networks parameters are discussed. After tuning the parameters and finding their optimal values, the network achieved accuracy over 98% on a test set comprising data from six different codecs.

Description

Citation

JON, J. Codec Detection from Speech [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2017.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Informační technologie

Comittee

doc. RNDr. Pavel Smrž, Ph.D. (předseda) doc. Ing. Ondřej Ryšavý, Ph.D. (místopředseda) doc. Ing. Michal Bidlo, Ph.D. (člen) doc. RNDr. Dana Hliněná, Ph.D. (člen) Ing. Jaroslav Rozman, Ph.D. (člen)

Date of acceptance

2017-06-16

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B. Otázky u obhajoby: Co je to PCA (Principal Component Analysis), k čemu se používá a k čemu byste ji mohl využít ve vaší práci. Může ovlivnit výsledek trénování u RNN/LSTM když na vstup sítě dáme více rámců a nebo připojím delta a double-delta (rychlostní a akcelerační) coeficienty = vstup je již s časovým kontextem?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO