Porcine model of a complicated skin and soft tissue infection caused by Pseudomonas aeruginosa

Loading...
Thumbnail Image

Authors

Lipový, Břetislav
Vacek, Lukáš
Polaštík Kleknerová, Dominika
Jeklová, Edita
Lišková, Lenka
Holoubek, Jakub
Matýsková, Dominika
Růžička, Filip

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

CZECH ACADEMY AGRICULTURAL SCIENCES
Altmetrics

Abstract

Pseudomonas aeruginosa poses a significant threat to both immunocompetent and immunocompromised individuals, often resulting in life -threatening infections. With increasing antimicrobial resistance, novel therapeutic strategies are urgently needed. Although animal models are crucial for preclinical studies, limited data are available for porcine models, more specifically for P. aeruginosa complicated skin and soft tissue infections (cSSTIs). This study presents a novel porcine model inducing and sustaining cSSTI for 14 days. Six pigs (120 wounds) were used for the development of infections, and within this group, two pigs (40 wounds) were used to evaluate the progression of the cSSTI infection. The model demonstrated bacterial loads of more than 10 7 CFU/ gram of tissue or higher. The cSSTI fully developed within three days and remained well above these levels until day 14 post -infection. Due to the immunocompetence of this model, all the immunological processes associated with the response to the presence of infection and the wound healing process are preserved.
Pseudomonas aeruginosa poses a significant threat to both immunocompetent and immunocompromised individuals, often resulting in life -threatening infections. With increasing antimicrobial resistance, novel therapeutic strategies are urgently needed. Although animal models are crucial for preclinical studies, limited data are available for porcine models, more specifically for P. aeruginosa complicated skin and soft tissue infections (cSSTIs). This study presents a novel porcine model inducing and sustaining cSSTI for 14 days. Six pigs (120 wounds) were used for the development of infections, and within this group, two pigs (40 wounds) were used to evaluate the progression of the cSSTI infection. The model demonstrated bacterial loads of more than 10 7 CFU/ gram of tissue or higher. The cSSTI fully developed within three days and remained well above these levels until day 14 post -infection. Due to the immunocompetence of this model, all the immunological processes associated with the response to the presence of infection and the wound healing process are preserved.

Description

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial 4.0 International
Citace PRO