Some Wolstenholme type congruences

dc.contributor.authorMeštrović, Romeo
dc.coverage.issue1cs
dc.coverage.volume2cs
dc.date.accessioned2013-11-26T11:04:50Z
dc.date.available2013-11-26T11:04:50Z
dc.date.issued2013cs
dc.description.abstractIn this paper we give an extension and another proof of the following Wolstenholme's type curious congruence established in 2008 by J. Zhao. Let s and l be two positive integers and let p be a prime such that p ls + 3. Then H(fsgl; p􀀀1) S(fsgl; p􀀀1) 8>>< >>: 􀀀 s(ls + 1)p2 2(ls + 2) Bp􀀀ls􀀀2 (mod p3) if 2 - ls (􀀀1)l􀀀1 sp ls + 1 Bp􀀀ls􀀀1 (mod p2) if 2 j ls: APs an application, for given prime p 5, we obtain explicit formulae for the sum 1 k1< <kl p􀀀1 1=(k1 kl) (mod p3) if k 2 f1; 3; : : : ; p 􀀀 2g, and for the sum P 1 k1< <kl p􀀀1 1=(k1 kl) (mod p2) if k 2 f2; 4; : : : ; p 􀀀 3gen
dc.formattextcs
dc.format.extent35-42cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMathematics for Applications. 2013, 2, č. 1, s. 35-42. ISSN 1805-3629.cs
dc.identifier.doi10.13164/ma.2013.04en
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/23995
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/2_1/mestrovic_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.titleSome Wolstenholme type congruencescs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
04.pdf
Size:
798.31 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections