Some Wolstenholme type congruences

Loading...
Thumbnail Image

Date

Authors

Meštrović, Romeo

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky

ORCID

Altmetrics

Abstract

In this paper we give an extension and another proof of the following Wolstenholme's type curious congruence established in 2008 by J. Zhao. Let s and l be two positive integers and let p be a prime such that p ls + 3. Then H(fsgl; p􀀀1) S(fsgl; p􀀀1) 8>>< >>: 􀀀 s(ls + 1)p2 2(ls + 2) Bp􀀀ls􀀀2 (mod p3) if 2 - ls (􀀀1)l􀀀1 sp ls + 1 Bp􀀀ls􀀀1 (mod p2) if 2 j ls: APs an application, for given prime p 5, we obtain explicit formulae for the sum 1 k1< <kl p􀀀1 1=(k1 kl) (mod p3) if k 2 f1; 3; : : : ; p 􀀀 2g, and for the sum P 1 k1< <kl p􀀀1 1=(k1 kl) (mod p2) if k 2 f2; 4; : : : ; p 􀀀 3g

Description

Keywords

Citation

Mathematics for Applications. 2013, 2, č. 1, s. 35-42. ISSN 1805-3629.
http://ma.fme.vutbr.cz/archiv/2_1/mestrovic_final.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO