Synthesis of titanium phosphide by thermal ALD based on a novel phosphorus precursor

Loading...
Thumbnail Image

Authors

Zazpe Mendioroz, Raúl
Charvot, Jaroslav
Rodriguez Pereira, Jhonatan
Hromádko, Luděk
Kurka, Michal
Baishya, Kaushik
Sopha, Hanna Ingrid
Bureš, Filip
Macák, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

ROYAL SOC CHEMISTRY
Altmetrics

Abstract

Herein, we present for the first time the synthesis of titanium phosphide (TixPy) by thermal ALD based on the use of in-house synthesized Tris(trimethyltin)phosphide (TMT3P) combined with titanium tetrachloride (TiCl4) as the P- and Ti-precursor, respectively. The deposition process demonstrated followed ALD principles and revealed an ALD window between 175 degrees C and 225 degrees C. The TixPy thin films grown on substrates of different nature were characterized by several techniques, showing granular surfaces and electrical resistivities of the order of hundreds of Ohms. The effects of different ALD parameters such as deposition temperature, dosing time of both precursors, and the type of substrate on the chemical composition were extensively assessed by X-ray photoelectron spectroscopy (XPS). Interestingly, the results yielded the deposition of P-rich titanium phosphide and showed that its chemical composition depends on the deposition temperature and the type of substrate. Based on XPS results, a tentative description of the TixPy growth as a function of the number of ALD cycles was provided.
Herein, we present for the first time the synthesis of titanium phosphide (TixPy) by thermal ALD based on the use of in-house synthesized Tris(trimethyltin)phosphide (TMT3P) combined with titanium tetrachloride (TiCl4) as the P- and Ti-precursor, respectively. The deposition process demonstrated followed ALD principles and revealed an ALD window between 175 degrees C and 225 degrees C. The TixPy thin films grown on substrates of different nature were characterized by several techniques, showing granular surfaces and electrical resistivities of the order of hundreds of Ohms. The effects of different ALD parameters such as deposition temperature, dosing time of both precursors, and the type of substrate on the chemical composition were extensively assessed by X-ray photoelectron spectroscopy (XPS). Interestingly, the results yielded the deposition of P-rich titanium phosphide and showed that its chemical composition depends on the deposition temperature and the type of substrate. Based on XPS results, a tentative description of the TixPy growth as a function of the number of ALD cycles was provided.

Description

Citation

Nanoscale. 2025, vol. 17, issue 19, p. 12406-12415.
https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr00457h

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial 3.0 Unported
Citace PRO