Rozpoznávání emocí pomocí konvolučních neuronových sítí

Loading...
Thumbnail Image

Date

Authors

Jileček, Jan

Mark

C

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Konvoluční neuronové sítě se dnes používají v mnoha oblastech, především ale pro strojové učení, kde vykazují velkou úspěšnost. Tato práce nejprve představí existující frameworky, další algoritmy pro rozpoznávání a pak popisuje, jak probíhalo vytváření vlastní datové sady a trénink modelu pro rozpoznávání emocí. Tento model má úspěšnost klasifikace 60%. Model je následně využit pro získání statistik o emocích z filmových trailerů a z těchto statistik je sestaven model pro rozpoznávání žánrů, který je konečně použit v naší aplikaci pro určení žánru vstupního traileru s přesností až 47%.
Convolutional neural networks are used for various tasks, but foremost in machine learning, in which they excel. This work is going to introduce some existing frameworks, other algorithms for recognition and then we describe the training dataset creation and the model for emotion recognition training process. Mentioned model has accuracy of 60%. It is used for emotion statistics retrieval from movie trailers. Model for genre recognition is created from those statistics and then finally used in our application for genre recognition of the input trailer, with best accuracy of 47%.

Description

Citation

JILEČEK, J. Rozpoznávání emocí pomocí konvolučních neuronových sítí [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2016.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

prof. Ing. Adam Herout, Ph.D. (předseda) prof. Ing. Martin Drahanský, Ph.D. (místopředseda) doc. Ing. Peter Chudý, Ph.D., MBA (člen) Mgr. Ing. Pavel Očenášek, Ph.D. (člen) Ing. Josef Strnadel, Ph.D. (člen)

Date of acceptance

2016-06-16

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm dobře (C) . Otázky u obhajoby: Jaké jsou další možné aplikace vytvořené neuronové sítě? Jaká je časová náročnost trénování a samotného rozpoznávání?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO