Triggering antibacterial activity of a common plant by biosorption of selected heavy metals

Loading...
Thumbnail Image

Authors

Kováčová, Maria
Yankovych, Halyna Bodnár
Augustyniak, Adrian
Casas Luna, Mariano
Remešová, Michaela
Findoráková, Lenka
Stahorský, Martin
Čelko, Ladislav
Baláž, Matej

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

SPRINGER
Altmetrics

Abstract

The presented study proposes an efficient utilization of a common Thymus serpyllum L. (wild thyme) plant as a highly potent biosorbent of Cu(II) and Pb(II) ions and the efficient interaction of the copper-laden plant with two opportunistic bacteria. Apart from biochars that are commonly used for adsorption, here we report the direct use of native plant, which is potentially interesting also for soil remediation. The highest adsorption capacity for Cu(II) and Pb(II) ions (q e = 12.66 and 53.13 mg g-1, respectively) was achieved after 10 and 30 min of adsorption, respectively. Moreover, the Cu-laden plant was shown to be an efficient antibacterial agent against the bacteria Escherichia coli and Staphylococcus aureus, the results being slightly better in the former case. Such an activity is enabled only via the interaction of the adsorbed ions effectively distributed within the biological matrix of the plant with bacterial cells. Thus, the sustainable resource can be used both for the treatment of wastewater and, after an effective embedment of metal ions, for the fight against microbes.
The presented study proposes an efficient utilization of a common Thymus serpyllum L. (wild thyme) plant as a highly potent biosorbent of Cu(II) and Pb(II) ions and the efficient interaction of the copper-laden plant with two opportunistic bacteria. Apart from biochars that are commonly used for adsorption, here we report the direct use of native plant, which is potentially interesting also for soil remediation. The highest adsorption capacity for Cu(II) and Pb(II) ions (q e = 12.66 and 53.13 mg g-1, respectively) was achieved after 10 and 30 min of adsorption, respectively. Moreover, the Cu-laden plant was shown to be an efficient antibacterial agent against the bacteria Escherichia coli and Staphylococcus aureus, the results being slightly better in the former case. Such an activity is enabled only via the interaction of the adsorbed ions effectively distributed within the biological matrix of the plant with bacterial cells. Thus, the sustainable resource can be used both for the treatment of wastewater and, after an effective embedment of metal ions, for the fight against microbes.

Description

Citation

JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY. 2024, vol. 29, issue 4, p. 201-216.
https://link.springer.com/article/10.1007/s00775-024-02045-1

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO