A digital Jordan surface theorem with respect to a graph connectedness
dc.contributor.author | Šlapal, Josef | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 21 | cs |
dc.date.issued | 2023-12-31 | cs |
dc.description.abstract | After introducing a graph connectedness induced by a given set of paths of the same length, we focus on the 2-adjacency graph on the digital line Z with a certain set of paths of length n for every positive integer n . The connectedness in the strong product of three copies of the graph is used to define digital Jordan surfaces. These are obtained as polyhedral surfaces bounding the polyhedra that can be face-to-face tiled with digital tetrahedra. | en |
dc.format | text | cs |
dc.format.extent | 1-9 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Open Mathematics. 2023, vol. 21, issue 1, p. 1-9. | en |
dc.identifier.doi | 10.1515/math-2023-0172 | cs |
dc.identifier.issn | 2391-5455 | cs |
dc.identifier.orcid | 0000-0001-8843-6842 | cs |
dc.identifier.other | 186967 | cs |
dc.identifier.researcherid | K-2755-2015 | cs |
dc.identifier.scopus | 6602234420 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/245207 | |
dc.language.iso | en | cs |
dc.publisher | De Gruyter | cs |
dc.relation.ispartof | Open Mathematics | cs |
dc.relation.uri | https://www.degruyter.com/document/doi/10.1515/math-2023-0172/html | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2391-5455/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | simple graph | en |
dc.subject | strong product | en |
dc.subject | path | en |
dc.subject | connectedness | en |
dc.subject | digital space | en |
dc.subject | Jordan surface; MSC 2020: 52C22 | en |
dc.subject | 68R10 | en |
dc.title | A digital Jordan surface theorem with respect to a graph connectedness | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-186967 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:48:56 | en |
sync.item.modts | 2025.01.17 19:34:28 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.1515_math20230172.pdf
- Size:
- 3.87 MB
- Format:
- Adobe Portable Document Format
- Description:
- file 10.1515_math20230172.pdf