A digital Jordan surface theorem with respect to a graph connectedness

Loading...
Thumbnail Image

Authors

Šlapal, Josef

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

De Gruyter
Altmetrics

Abstract

After introducing a graph connectedness induced by a given set of paths of the same length, we focus on the 2-adjacency graph on the digital line Z with a certain set of paths of length n for every positive integer n . The connectedness in the strong product of three copies of the graph is used to define digital Jordan surfaces. These are obtained as polyhedral surfaces bounding the polyhedra that can be face-to-face tiled with digital tetrahedra.
After introducing a graph connectedness induced by a given set of paths of the same length, we focus on the 2-adjacency graph on the digital line Z with a certain set of paths of length n for every positive integer n . The connectedness in the strong product of three copies of the graph is used to define digital Jordan surfaces. These are obtained as polyhedral surfaces bounding the polyhedra that can be face-to-face tiled with digital tetrahedra.

Description

Citation

Open Mathematics. 2023, vol. 21, issue 1, p. 1-9.
https://www.degruyter.com/document/doi/10.1515/math-2023-0172/html

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO