Deep Learning For Magnetic Resonance Spectroscopy Quantification: A Time-Frequency Analysis Approach
but.event.date | 23.04.2020 | cs |
but.event.title | Student EEICT 2020 | cs |
dc.contributor.author | Shamaei, Amirmohammad | |
dc.date.accessioned | 2021-07-15T13:12:39Z | |
dc.date.available | 2021-07-15T13:12:39Z | |
dc.date.issued | 2020 | cs |
dc.description.abstract | Magnetic resonance spectroscopy (MRS) is a technique capable of detecting chemical compounds from localized volumes in living tissues. Quantification of MRS signals is required for obtaining the metabolite concentrations of the tissue under investigation. However, reliable quantification of MRS is difficult. Recently deep learning (DL) has been used for metabolite quantification of MRS signals in the frequency domain. In another study, it was shown that DL in combination with time-frequency analysis could be used for artifact detection in MRS. In this study, we verify the hypothesis that DL in combination with time-frequency analysis can also be used for metabolite quantification and yields results more robust than DL trained with MR signals in the frequency domain. We used the complex matrix of absolute wavelet coefficients (WC) for the timefrequency representation of the signal, and convolutional neural network (CNN) implementation for DL. The comparison with DL used for quantification of data in the frequency domain is presented. | en |
dc.format | text | cs |
dc.format.extent | 131-135 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings II of the 26st Conference STUDENT EEICT 2020: Selected Papers. s. 131-135. ISBN 978-80-214-5868-0 | cs |
dc.identifier.isbn | 978-80-214-5868-0 | |
dc.identifier.uri | http://hdl.handle.net/11012/200638 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings II of the 26st Conference STUDENT EEICT 2020: Selected papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/EEICT2020 | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | magnetic resonance spectroscopy; quantification; deep learning; machine learning | en |
dc.title | Deep Learning For Magnetic Resonance Spectroscopy Quantification: A Time-Frequency Analysis Approach | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 131-eeict_2.pdf
- Size:
- 808.71 KB
- Format:
- Adobe Portable Document Format
- Description: