Deep Learning For Magnetic Resonance Spectroscopy Quantification: A Time-Frequency Analysis Approach

Loading...
Thumbnail Image
Date
2020
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract
Magnetic resonance spectroscopy (MRS) is a technique capable of detecting chemical compounds from localized volumes in living tissues. Quantification of MRS signals is required for obtaining the metabolite concentrations of the tissue under investigation. However, reliable quantification of MRS is difficult. Recently deep learning (DL) has been used for metabolite quantification of MRS signals in the frequency domain. In another study, it was shown that DL in combination with time-frequency analysis could be used for artifact detection in MRS. In this study, we verify the hypothesis that DL in combination with time-frequency analysis can also be used for metabolite quantification and yields results more robust than DL trained with MR signals in the frequency domain. We used the complex matrix of absolute wavelet coefficients (WC) for the timefrequency representation of the signal, and convolutional neural network (CNN) implementation for DL. The comparison with DL used for quantification of data in the frequency domain is presented.
Description
Citation
Proceedings II of the 26st Conference STUDENT EEICT 2020: Selected Papers. s. 131-135. ISBN 978-80-214-5868-0
https://conf.feec.vutbr.cz/eeict/EEICT2020
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
DOI
Citace PRO