Structural and electrical characterization of cadmium phosphate glasses doped with different concentration of sodium chloride

Loading...
Thumbnail Image

Authors

Assayed, Ghada A.I.
Shaheen, Adel A
Alsoud, Ammar Awadallah Ahmad
Al-Bashaish, Saleh R.
Mousa, Marwan Suleiman
Knápek, Alexandr
Sobola, Dinara

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

The electrical characteristics of cadmium phosphate glasses doped with varying concentrations of sodium chloride [ Cd-3( PO4)(2)](1-x) [ NaCl](x) , where x = 0, 2, 4 ,6 mol.% NaCl, were investigated with respect to both dopant levels and temperature. Electrical impedance spectroscopy was employed, and impedance measurements were taken across the frequency spectrum from 10(2) Hz to 10(6) Hz. Samples were characterized by scanning electron microscopy-energy dispersive x-ray spectroscopy, x-ray diffraction analysis and Fourier Transform Infrared Spectroscopy. The fi ndings revealed a decrease in bulk resistance with increasing temperature and dopant concentration, indicating a rise in DC- conductivity and suggesting a semiconducting behavior in the material. Moreover, the activation energy values were noted to decrease as dopant concentration increased. Analysis of the AC-conductivity variation with frequency delineated two distinct regions: a low-frequency region where AC-conductivity increased with frequency, indicative of a "pumping force" effect aiding charge carrier movement through various conduction states, and a high-frequency region or frequency-independent zone signifying a transition towards a more ohmic behavior in the material. The study highlighted a decrease in both the dielectric constant and dielectric loss with rising temperature and frequency across all dopant concentrations. Furthermore, the Reaction Coefficient "s" was found to be less than one, suggesting that the conduction mechanism can be elucidated in terms of the Correlated Barrier Hopping ( CBH ) model.
The electrical characteristics of cadmium phosphate glasses doped with varying concentrations of sodium chloride [ Cd-3( PO4)(2)](1-x) [ NaCl](x) , where x = 0, 2, 4 ,6 mol.% NaCl, were investigated with respect to both dopant levels and temperature. Electrical impedance spectroscopy was employed, and impedance measurements were taken across the frequency spectrum from 10(2) Hz to 10(6) Hz. Samples were characterized by scanning electron microscopy-energy dispersive x-ray spectroscopy, x-ray diffraction analysis and Fourier Transform Infrared Spectroscopy. The fi ndings revealed a decrease in bulk resistance with increasing temperature and dopant concentration, indicating a rise in DC- conductivity and suggesting a semiconducting behavior in the material. Moreover, the activation energy values were noted to decrease as dopant concentration increased. Analysis of the AC-conductivity variation with frequency delineated two distinct regions: a low-frequency region where AC-conductivity increased with frequency, indicative of a "pumping force" effect aiding charge carrier movement through various conduction states, and a high-frequency region or frequency-independent zone signifying a transition towards a more ohmic behavior in the material. The study highlighted a decrease in both the dielectric constant and dielectric loss with rising temperature and frequency across all dopant concentrations. Furthermore, the Reaction Coefficient "s" was found to be less than one, suggesting that the conduction mechanism can be elucidated in terms of the Correlated Barrier Hopping ( CBH ) model.

Description

Citation

Physica Scripta. 2024, vol. 99, issue 12, p. 1-14.
https://iopscience.iop.org/article/10.1088/1402-4896/ad8822

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO