Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2

dc.contributor.authorDiblík, Josefcs
dc.contributor.authorHalfarová, Hanacs
dc.contributor.authorŠafařík, Jancs
dc.coverage.issue2017cs
dc.coverage.volume2017cs
dc.date.accessioned2020-08-04T11:01:52Z
dc.date.available2020-08-04T11:01:52Z
dc.date.issued2017-06-12cs
dc.description.abstractTwo-dimensional linear discrete systems $$ x(k+1)=Ax(k)+\sum\limits_{l=1}^{n}B_{l}x_{l}(k-m_{l}),\,\,\,k\ge 0 $$are analyzed, where $m_{1}, m_{2},\dots, m_{n}$ are constant integer delays, $0<m_{1}<m_{2}<\dots<m_{n}$, $A$, $B_{1},\dots, B_{n}$ are constant $2\times 2$ matrices, $A=(a_{ij})$, $B_{l}=(b^l_{ij})$, $i,j=1,2$, $l=1,2,\dots,n$ and $x: \{-m_n,-m_n+1,\dots\}\to \mathbb{R}^2$. Under the assumption that the system is weakly delayed, the asymptotic behavior of its solutions is studied and asymptotic formulas are derived.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationDiscrete Dynamics in Nature and Society. 2017, vol. 2017, issue 2017, p. 1-10.en
dc.identifier.doi10.1155/2017/6028078cs
dc.identifier.issn1607-887Xcs
dc.identifier.other137194cs
dc.identifier.urihttp://hdl.handle.net/11012/193243
dc.language.isoencs
dc.publisherHindawics
dc.relation.ispartofDiscrete Dynamics in Nature and Societycs
dc.relation.urihttp://dx.doi.org/10.1155/2017/6028078cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1607-887X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectasymptotic behavioren
dc.subjectdiscrete systemen
dc.subjectweakly delayed systemen
dc.titleConditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2en
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-137194en
sync.item.dbtypeVAVen
sync.item.insts2020.08.04 13:01:52en
sync.item.modts2020.08.04 12:19:18en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometriecs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematikycs
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. AdMaS Divize KCEcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
6028078.pdf
Size:
2.15 MB
Format:
Adobe Portable Document Format
Description:
6028078.pdf