Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2
dc.contributor.author | Diblík, Josef | cs |
dc.contributor.author | Halfarová, Hana | cs |
dc.contributor.author | Šafařík, Jan | cs |
dc.coverage.issue | 2017 | cs |
dc.coverage.volume | 2017 | cs |
dc.date.accessioned | 2020-08-04T11:01:52Z | |
dc.date.available | 2020-08-04T11:01:52Z | |
dc.date.issued | 2017-06-12 | cs |
dc.description.abstract | Two-dimensional linear discrete systems $$ x(k+1)=Ax(k)+\sum\limits_{l=1}^{n}B_{l}x_{l}(k-m_{l}),\,\,\,k\ge 0 $$are analyzed, where $m_{1}, m_{2},\dots, m_{n}$ are constant integer delays, $0<m_{1}<m_{2}<\dots<m_{n}$, $A$, $B_{1},\dots, B_{n}$ are constant $2\times 2$ matrices, $A=(a_{ij})$, $B_{l}=(b^l_{ij})$, $i,j=1,2$, $l=1,2,\dots,n$ and $x: \{-m_n,-m_n+1,\dots\}\to \mathbb{R}^2$. Under the assumption that the system is weakly delayed, the asymptotic behavior of its solutions is studied and asymptotic formulas are derived. | en |
dc.format | text | cs |
dc.format.extent | 1-10 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Discrete Dynamics in Nature and Society. 2017, vol. 2017, issue 2017, p. 1-10. | en |
dc.identifier.doi | 10.1155/2017/6028078 | cs |
dc.identifier.issn | 1607-887X | cs |
dc.identifier.other | 137194 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/193243 | |
dc.language.iso | en | cs |
dc.publisher | Hindawi | cs |
dc.relation.ispartof | Discrete Dynamics in Nature and Society | cs |
dc.relation.uri | http://dx.doi.org/10.1155/2017/6028078 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1607-887X/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | asymptotic behavior | en |
dc.subject | discrete system | en |
dc.subject | weakly delayed system | en |
dc.title | Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2 | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-137194 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2020.08.04 13:01:52 | en |
sync.item.modts | 2020.08.04 12:19:18 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometrie | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. AdMaS Divize KCE | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 6028078.pdf
- Size:
- 2.15 MB
- Format:
- Adobe Portable Document Format
- Description:
- 6028078.pdf