Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2

Loading...
Thumbnail Image

Authors

Diblík, Josef
Boháčková, Hana
Šafařík, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Hindawi
Altmetrics

Abstract

Two-dimensional linear discrete systems $$ x(k+1)=Ax(k)+\sum\limits_{l=1}^{n}B_{l}x_{l}(k-m_{l}),\,\,\,k\ge 0 $$are analyzed, where $m_{1}, m_{2},\dots, m_{n}$ are constant integer delays, $0<m_{1}<m_{2}<\dots<m_{n}$, $A$, $B_{1},\dots, B_{n}$ are constant $2\times 2$ matrices, $A=(a_{ij})$, $B_{l}=(b^l_{ij})$, $i,j=1,2$, $l=1,2,\dots,n$ and $x: \{-m_n,-m_n+1,\dots\}\to \mathbb{R}^2$. Under the assumption that the system is weakly delayed, the asymptotic behavior of its solutions is studied and asymptotic formulas are derived.
Two-dimensional linear discrete systems $$ x(k+1)=Ax(k)+\sum\limits_{l=1}^{n}B_{l}x_{l}(k-m_{l}),\,\,\,k\ge 0 $$are analyzed, where $m_{1}, m_{2},\dots, m_{n}$ are constant integer delays, $0<m_{1}<m_{2}<\dots<m_{n}$, $A$, $B_{1},\dots, B_{n}$ are constant $2\times 2$ matrices, $A=(a_{ij})$, $B_{l}=(b^l_{ij})$, $i,j=1,2$, $l=1,2,\dots,n$ and $x: \{-m_n,-m_n+1,\dots\}\to \mathbb{R}^2$. Under the assumption that the system is weakly delayed, the asymptotic behavior of its solutions is studied and asymptotic formulas are derived.

Description

Citation

DISCRETE DYNAMICS IN NATURE AND SOCIETY. 2017, vol. 2017, issue 2017, p. 1-10.
http://dx.doi.org/10.1155/2017/6028078

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO