The development of ultra-lightweight concrete based on foam glass aggregate.
Loading...
Date
Authors
Zach, Jiří
Bubeník, Jan
Sedlmajer, Martin
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Altmetrics
Abstract
Foam glass is currently a material produced from waste glass that cannot be used in the glass industry. Therefore, it is currently made from secondary raw materials obtained by recycling unusable waste glass. Due to the large proportion of closed pores in the material structure, the foam glass achieves excellent thermal insulation properties and limited water absorption. The porous structure of the glass is relatively regular, and the pores predominantly have a round character; therefore, the foam glass exhibits very good mechanical properties at a low density. Foam glass in the form of aggregate represents an interesting raw material from which it is possible to produce various types of light composites with a very good ratio of thermal insulation and mechanical properties. The contribution describes the results of research in the field of the development of ultra-lightweight aggregate concretes with subsequent use for producing prefabricated thermal insulating masonry elements for the construction of energy efficient buildings.
Foam glass is currently a material produced from waste glass that cannot be used in the glass industry. Therefore, it is currently made from secondary raw materials obtained by recycling unusable waste glass. Due to the large proportion of closed pores in the material structure, the foam glass achieves excellent thermal insulation properties and limited water absorption. The porous structure of the glass is relatively regular, and the pores predominantly have a round character; therefore, the foam glass exhibits very good mechanical properties at a low density. Foam glass in the form of aggregate represents an interesting raw material from which it is possible to produce various types of light composites with a very good ratio of thermal insulation and mechanical properties. The contribution describes the results of research in the field of the development of ultra-lightweight aggregate concretes with subsequent use for producing prefabricated thermal insulating masonry elements for the construction of energy efficient buildings.
Foam glass is currently a material produced from waste glass that cannot be used in the glass industry. Therefore, it is currently made from secondary raw materials obtained by recycling unusable waste glass. Due to the large proportion of closed pores in the material structure, the foam glass achieves excellent thermal insulation properties and limited water absorption. The porous structure of the glass is relatively regular, and the pores predominantly have a round character; therefore, the foam glass exhibits very good mechanical properties at a low density. Foam glass in the form of aggregate represents an interesting raw material from which it is possible to produce various types of light composites with a very good ratio of thermal insulation and mechanical properties. The contribution describes the results of research in the field of the development of ultra-lightweight aggregate concretes with subsequent use for producing prefabricated thermal insulating masonry elements for the construction of energy efficient buildings.
Description
Keywords
Citation
IOP Conference Series: Materials Science and Engineering. 2021, vol. 1039, p. 1-9.
https://iopscience.iop.org/article/10.1088/1757-899X/1039/1/012011/pdf
https://iopscience.iop.org/article/10.1088/1757-899X/1039/1/012011/pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported

0000-0002-0426-8317 