Electronically Tunable Universal Filter and Quadrature Oscillator Using Low-Voltage Differential Difference Transconductance Amplifiers

Loading...
Thumbnail Image

Authors

Kumngern, Montree
Suksaibul, Pichai
Khateb, Fabian
Kulej, Tomasz

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

This paper presents a new electronically tunable universal filter and quadrature oscillator for low frequency biomedical and biosensor applications employing low-voltage differential difference transconductance amplifier (DDTA). The DDTACMOS structure uses 0.5V of supply voltage and consumes 277 nW of power. Unlike the previous universal filters, the proposed filter provides many transfer functions of the standard five transfer functions such as low-pass, high-pass, band-pass, band-stop and all-pass with both unity and controlled voltage gains as well as both inverting and non-inverting transfer functions. The natural frequency and the voltage gain of the five standard transfer functions can be controlled electronically. For the band-pass filter, the third intermodulation distortion (IMD3) was 0.37% for 20 mV(pp) input signal while the output integrated noise was 61.37 mu V. The dynamic range (DR) was 53.27 dB for 1% IMD3. The quadrature oscillator has electronically and orthogonal control of the condition and frequency of oscillation. The proposed circuit and its applications were designed and verified via Cadence simulator tool using 0.13 mu m UMC CMOS technology. Further, the circuit was evaluated by PSPICE simulation and experiment test using commercial OTA LM13700.
This paper presents a new electronically tunable universal filter and quadrature oscillator for low frequency biomedical and biosensor applications employing low-voltage differential difference transconductance amplifier (DDTA). The DDTACMOS structure uses 0.5V of supply voltage and consumes 277 nW of power. Unlike the previous universal filters, the proposed filter provides many transfer functions of the standard five transfer functions such as low-pass, high-pass, band-pass, band-stop and all-pass with both unity and controlled voltage gains as well as both inverting and non-inverting transfer functions. The natural frequency and the voltage gain of the five standard transfer functions can be controlled electronically. For the band-pass filter, the third intermodulation distortion (IMD3) was 0.37% for 20 mV(pp) input signal while the output integrated noise was 61.37 mu V. The dynamic range (DR) was 53.27 dB for 1% IMD3. The quadrature oscillator has electronically and orthogonal control of the condition and frequency of oscillation. The proposed circuit and its applications were designed and verified via Cadence simulator tool using 0.13 mu m UMC CMOS technology. Further, the circuit was evaluated by PSPICE simulation and experiment test using commercial OTA LM13700.

Description

Citation

IEEE Access. 2022, vol. 10, issue 1, p. 68965-68980.
https://ieeexplore.ieee.org/document/9807276

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO